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Learning dynamical information from static protein
and sequencing data
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Many complex processes, from protein folding to neuronal network dynamics, can be

described as stochastic exploration of a high-dimensional energy landscape. Although effi-

cient algorithms for cluster detection in high-dimensional spaces have been developed over

the last two decades, considerably less is known about the reliable inference of state

transition dynamics in such settings. Here we introduce a flexible and robust numerical

framework to infer Markovian transition networks directly from time-independent data

sampled from stationary equilibrium distributions. We demonstrate the practical potential of

the inference scheme by reconstructing the network dynamics for several protein-folding

transitions, gene-regulatory network motifs, and HIV evolution pathways. The predicted

network topologies and relative transition time scales agree well with direct estimates from

time-dependent molecular dynamics data, stochastic simulations, and phylogenetic trees,

respectively. Owing to its generic structure, the framework introduced here will be applicable

to high-throughput RNA and protein-sequencing datasets, and future cryo-electron micro-

scopy (cryo-EM) data.
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Energy landscapes encapsulate the effective dynamics of a
wide variety of physical, biological, and chemical systems1,2.
Well-known examples include a myriad of biophysical

processes3–7, multi-phase systems2, thermally activated hopping
in optical traps8,9, chemical reactions1,10, brain neuronal
expression11, cellular development12–16, and social networks17.
Energetic concepts have also been connected to machine learn-
ing18 and to viral fitness landscapes, where pathways with the
lowest energy barriers may explain typical mutational evolu-
tionary trajectories of viruses between fitness peaks19,20. Recent
advances in experimental techniques including cryo-electron
microscopy (cryo-EM)3,21,22 and single-cell RNA-sequencing23,
as well as new online social interaction datasets24, are producing
an unprecedented wealth of high-dimensional instantaneous
snapshots of biophysical and social systems. Although much
progress has been made in dimensionality reduction25–27 and the
reconstruction of effective energy landscapes in these
settings3,13,16,17,28, the problem of inferring dynamical informa-
tion such as protein-folding or mutation pathways and rates from
instantaneous ensemble data remains a major challenge.

To address this practically important question, we introduce
here an integrated computational framework for identifying
metastable states on reconstructed high-dimensional energy
landscapes and for predicting the relative mean first passage times
(MFPTs) between those states, without requiring explicitly time-
dependent data. Our inference scheme employs an analytic
representation of the data based on a Gaussian mixture model
(GMM)29 to enable efficient identification of minimum-energy
transition pathways30–32. We show how the estimation of tran-
sition networks can be optimized by reducing the dimension of a
high-dimensional landscape while preserving its topology. Our
algorithm utilizes experimentally validated analytical results8,9

for transition rates1,33–35. Thus, it is applicable whenever the
time evolution of the underlying system can be approximated by
a Fokker–Planck-type Markovian dynamics, as is the case for a
wide range of physical, chemical, and biological processes1,34.

Specifically, we illustrate the practical potential by inferring
protein-folding transitions, state-switching in gene-regulatory
networks, and HIV evolution pathways. Current standard
methods for coarse-graining the conformational dynamics of

biophysical structures36,37 typically estimate Markovian transi-
tion rates from time-dependent trajectory data in large-scale
molecular dynamics (MD) simulations38,39. By contrast, we show
here that protein-folding pathways and rates can be recovered
without explicit knowledge of the time-dependent trajectories,
provided the system is sufficiently ergodic and equilibrium dis-
tributions are sampled accurately. Furthermore, we show that the
dynamics of state-switching or phenotype-switching in gene-
regulatory networks40 can be inferred directly from static snap-
shots of protein abundances in regimes where deterministic
modeling only captures a single steady state41,42. The agreement
of our inferred results with two separate sets of time-dependent
measurements suggests that the inference of complex transition
networks via reconstructed energy landscapes can provide a
viable and often more efficient alternative to traditional time-
series estimates, particularly as new experimental techniques will
offer unprecedented access to high-dimensional ensemble data.

Results
Minimum-energy-path network reconstruction. The equili-
brium distribution p xð Þ of a particle diffusing over a potential
energy landscape EðxÞ is the Boltzmann distribution pðxÞ ¼
exp �EðxÞ=kBT½ �=Z; where kB is the Boltzmann constant, T is the
temperature, and Z is a normalization constant. Given the
probability density function (PDF) pðxÞ, the effective energy can
be inferred from

EðxÞ ¼ �kBT ln½pðxÞ=pmax�; ð1Þ

where pmax is the maximum value of the PDF, included to fix the
minimum energy at zero. Our goal is to estimate the MFPTs
between minima on the landscape using only sampled data. We
divide this task into three steps, as illustrated in Fig. 1 for test data
(Supplementary Methods). In the first step, we approximate the
empirical PDF by using the expectation maximization algorithm
to fit a GMM in a space of sufficiently large dimension d
(Methods and Fig. 1a). Mixtures with a bounded number of
components can be recovered in time polynomial in both the
dimension d and the required accuracy43. The resulting GMM
yields an analytical expression for EðxÞ via Eq. (1).
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Fig. 1 Inference scheme for estimating transition networks and mean first passage times (MFPTs). We apply the protocol to test data generated from a
Gaussian Mixture Model (GMM; Supplementary Methods). a Inputs are the instantaneously measured data, sampled here from a ten-dimensional GMM
with five Gaussians, plotted in the first three principal components (PCs); colors denote the Gaussian that a point was sampled from. b Top: a GMM is fit to
the samples to construct the empirical probability distribution, which is then converted to the energy landscape using Eq. (1). Background color indicates
the projection of the empirical energy landscape onto the first two PCs. Minimum-energy paths (MEPs, gray lines) between minima 1–5 on the landscape
are calculated using the NEB algorithm (Supplementary Methods). Bottom: disconnectivity graph illustrating minima on the energy landscape (circles) and
saddle points between them (squares). c A Markov state model (MSM) is constructed with transition rates given by Eq. (2) and solved to predict the
MFPTs between discrete states (top right; Methods). MFPTs predicted by the MSM agree with direct estimates from Brownian dynamics simulations in
the inferred energy landscape (top left; Supplementary Methods). MFPTs calculated in a reduced four-dimensional space using the scaling given in Eq. (3)
recover the MFPTs accurately (bottom left). Without the appropriate scaling, the predicted MFPTs are inaccurate (bottom right).
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In the second step, the inferred energy landscape EðxÞ is
reduced to a minimum-energy-path (MEP) network whose nodes
(states) are the minima of EðxÞ (Fig. 1b top). Each edge represents
an MEP that connects two adjacent minima and passes through
an intermediate saddle point (Fig. 1b). The MEPs are found using
the nudged elastic band (NEB) algorithm30,31, which discretizes
paths with a series of bead-spring segments (Supplementary
Methods).

Markov state model. Given the MEP network, the final step is to
infer the rates for transitioning from a minimum α to an adjacent
minimum β. Assuming overdamped Brownian dynamics, the
directed transition α ! β can be characterized by the generalized
Kramers transition rate1

kαβ ¼
ωb

2πγ

Q
iω

α
iQ0

i ω
S
i

exp �Eb=kBTð Þ; ð2Þ

where γ is the effective friction, Eb is the energy difference
between the saddle point S on the MEP (over the energy barrier)
and the minimum α, ωα

i are the stable angular frequencies at the
minimum α, and ωS

i and ωb are the stable and unstable angular
frequencies at the saddle, respectively. Equation (2) assumes
isotropic friction but can be generalized to a tensorial form1 if
anisotropies are relevant. In most practical applications, the error
from assuming γ to be isotropic is likely negligible compared with
other experimental noise sources. In principle, Eq. (2) can be
refined further by including quartic (or higher) corrections to the
prefactor ωb=γ to account for details of the saddle shape1. Such
corrections can be significant for GMMs (Supplementary
Methods).

Each edge ðαβÞ has two weights, kαβ and kβα, assigned to it. The
rate matrix ðkαβÞ completely specifies the Markov state model
(MSM) on the network. Solving the MSM yields the matrix of
pairwise MFPTs between states (Fig. 1c and Methods). In a
simple two-state system, the MFPTs are determined up to a time
scale by detailed balance, but for three or more states the
influence of landscape topography and the associated state
network topology (Methods) can lead to interesting hierarchical
ordering of passage times. Identifying these hierarchies and ways
to manipulate them is the key to controlling protein-folding or
viral evolution pathways.

Topology-preserving dimensionality reduction. To ensure that
the inference protocol can be efficiently applied to larger systems
with a high-dimensional energy landscape, we derive a general
method for reducing the dimension D of an energy landscape
while preserving its topology. A PDF with C well-separated
Gaussians in D dimensions can be projected onto the d ¼ C � 1
dimensional hyperplane spanning the Gaussian means using
principal component analysis (PCA); projecting onto a hyper-
plane of dimension d � 1 risks losing information about the
relative positions of the Gaussian means and, in general, does not
allow a correct recovery of the MFPTs (Supplementary Methods).
In practice, it suffices to choose C to be larger than the number of
energy minima if their number is not known in advance.

To preserve the topology under such a transformation—which
is essential for the correct preservation of energy barriers and
MEPs in the reduced-dimensional space—one needs to rescale
GMM components in the low-dimensional space depending on
the covariances of the Gaussians in the D� d neglected
dimensions (Fig. 1c). Explicitly, one finds that within the
subspace spanned by the retained principal components

(Supplementary Methods)

pðxDÞ ¼
XC
i¼1

ϕi p
d
i ðxdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πUT

dΣiUd

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πΣið Þp ð3Þ

as long as p satisfies certain minimally restrictive conditions
(Supplementary Methods). Here, Ud denotes the first d ¼ C � 1
columns of the matrix of sorted eigenvectors U of the covariance
matrix of the Gaussian means, and ϕi, p

d
i and Σi are the mixing

components, reduced-dimensional PDF, and the covariance
matrix of each individual Gaussian in the mixture, respectively
(Supplementary Methods). Neglecting the determinant scale
factors in Eq. (3), as is often done when GMM models are fitted
to PCA-projected data, leads to inaccurate MFPT estimates
(Fig. 1c, bottom). It is noteworthy that Eq. (3) does not represent
inversion of the transformation performed on the data by PCA,
unless all D dimensions are retained; if some dimensions are
neglected, Eq. (3) represents a rescaling of the marginal
distribution in the retained dimensions to reconstruct the PDF
in the original dimension. In other words, the transition rates are
best recovered from the conditional—not marginal—distribu-
tions, which are given by Eq. (3) up to a constant factor that does
not affect energy differences.

Dimensionality reduction can substantially improve the
efficiency of the NEB algorithm step as follows: when the MEPs
in the reduced d-dimensional space have been computed, the
identified minima and saddles can be transformed back into the
original data dimension D to calculate the Hessian matrices at
these points, allowing Kramers’ rates to be calculated as usual
(Fig. 1c and Supplementary Methods). Alternatively, in specific
situations where the MEPs lie outside the hyperplane spanning
the means (Supplementary Methods), the MEP in the reduced
d-dimensional space can be transformed back to the D-dimen-
sional space and can be used as an initial condition in that space,
significantly reducing computational cost. These results present a
step towards a general protocol for identifying reaction
coordinates or collective variables for projection of a high-
dimensional landscape onto a reduced space, while quantitatively
preserving the topology of the landscape.

Protein folding. To illustrate the vast practical potential of the
above scheme, we demonstrate the successful recovery of several
protein-folding pathways, using data from previous large-scale
MD simulations38. The protein trajectories, consisting of the
time-dependent coordinates of the alpha carbon backbone, were
pre-processed, subsampled by a factor of 5, treated as a set of
static equilibrium measurements, and reduced in dimension
before fitting a GMM (Methods). As is typical for high-
dimensional parameter estimation with few structural assump-
tions, the fitting error due to a finite sample size n in d dimen-
sions scales approximately as

ffiffiffiffiffiffiffiffi
d=n

p
(Supplementary Methods);

see refs. 44–46 for advanced techniques tackling sample-size lim-
itations. Here, d < 10 so the sample size n � 105 suffices for
effective recovery; indeed, our results were found to be robust for
trajectories further subsampled by up to a factor of 25, leaving
around 500 samples per Gaussian (Supplementary Fig. 3).

For each of the four analyzed proteins Villin, BBA, NTL9, and
WW, the reconstructed energy landscapes reveal multiple states
including a clear global minimum corresponding to the folded
state (Fig. 2a, b). To estimate MFPTs, we determined the effective
friction γ in Eq. (2) for each protein from the condition that the
line of best fit through the predicted vs. measured MFPTs has
unit gradient. Although not usually known, γ could in principle
be calculated by incorporating time-dependent information from
MD simulations or experimental data. Our MFPT predictions
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agree well with direct estimates (Supplementary Methods) from
the time-dependent MD trajectories (Fig. 2c). Detailed analysis
confirms that the MFPT estimates are robust under variations of
the number of Gaussians used in the mixture (Supplementary
Fig. 1). Also, the estimated MEPs are in good agreement with the
typical transition paths observed in the MD trajectories
(Supplementary Fig. 2).

Gene-regulatory networks. Next, we demonstrate the ability of
our protocol to infer state-switching pathways in multistable gene-
regulatory networks. Using a Gillespie stochastic simulation algo-
rithm (SSA; Methods), we simulated three repressilator-type gene-
regulatory network motifs47 with self-activation. Gene network
motifs with features such as these have been studied extensively in
recent years, owing to their ability to exhibit precise oscillations48

and to their possible importance in the determination of multiple
cell fates49 in the appropriate parameter regimes, although the role
of noise in such networks is not well understood. In our simulated
gene networks, each gene encodes a protein that activates the
expression of its associated gene and represses another, with D ¼ 2,
3, and 4 dimensions at low molecule numbers (Fig. 3a and Sup-
plementary Methods). In each case, parameters were chosen to
preclude oscillatory dynamics (Fig. 3a). The energy landscapes
reconstructed from the simulation datasets in protein molecule-
number space (with time-dependence removed) revealed multiple
metastable states for each network (Fig. 3b and Supplementary
Fig. 5). Broadly, we found each state to correspond to a mixture of
low and high abundances for each separate protein, with the two
most common states in D ¼ 4 dimensions consisting of two

abundant and two depleted proteins (Fig. 3b). In agreement with
previous studies41,42, the identified metastable states were not
recovered from deterministic simulations of the governing ordinary
differential equations (Supplementary Methods), but could only be
identified directly from the stochastic data (Fig. 3a, b). We deter-
mined the effective friction γ in Eq. (2) for each D as in the protein
example. The predicted MFPTs and MEPs between each metastable
state were found to be accurate in comparison with time-dependent
measurements (Fig. 3c and Supplementary Fig. 5b) and were robust
to measurement noise typically encountered in single-cell sequen-
cing (Supplementary Fig. 6). Our framework also correctly pre-
dicted MFPTs for a 5D asymmetric gene network (Supplementary
Fig. 7). These results demonstrate the utility of our protocol for
gene-regulatory network datasets and, more generally, energy
landscapes in discrete spaces.

Viral evolution. As a final proof-of-concept application, we
demonstrate that our inference scheme recovers the expected
evolution pathways between HIV sequences as well as the key
features of a distance-based phylogenetic tree (Fig. 4). To this end,
we reconstructed an effective energy landscape from publicly
available HIV sequences sampled longitudinally at several points
in time from multiple patients50, assuming that the frequency of
an observed genotype is proportional to its probability of fixation
and that the high-dimensional discrete sequence space can be
projected onto a continuous reduced-dimensional phenotype
space (Fig. 4a and Supplementary Methods). First, a Gaussian was
fit to each patient and then combined in a GMM with equal
weights, to avoid bias in the fitness landscape towards sequences
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infecting any specific patient (Supplementary Methods). There-
after, we applied our inference protocol to reconstruct the
effective energy landscape, transition network (Fig. 4b), and
disconnectivity graph (Fig. 4c), where each state is associated to a
separate patient. As expected, states corresponding to patients
infected with different HIV subtypes are not connected by MEPs
(Fig. 4a, b). The disconnectivity graph reproduces the key features
of a coarse-grained patient-level representation of the phyloge-
netic tree (Fig. 4c). Using our inference scheme, vertical evolution
in the tree can be tracked along the MEPs in a reduced-
dimensional sequence space (Fig. 4b). The energy barriers,
represented by the lengths of the vertical lines in the dis-
connectivity graph (Fig. 4c), provide an estimate for the relative
likelihood of evolution to fixation via point mutations between
fitness peaks (energy minima). If mutation rates are known, the
MEPs can also be used to estimate the time for evolution to
fixation from one fitness peak to another51.

Discussion
Finding the appropriate number of collective macro-variables to
describe an energy landscape is a generic problem relevant
to many fields. For example, although some proteins can be
described through effective one-dimensional reaction
coordinates5,7,52,53, the accurate description of their diffusive
dynamics over the full microscopic energy landscape requires
many degrees of freedom54,55. Whenever dynamics are inherently
high-dimensional, topology-preserving dimensionality reduction
can enable a much faster search of the energy landscape for
minima and MEPs. In practice, data dimension is often reduced
with PCA or similar methods before constructing an energy
landscape55–62. The extent to which commonly used dimen-
sionality reduction techniques alter MEP network topology or
quantitatively preserve energy barriers is not well understood.
Equation (3) suggests that reducing dimensions using PCA
should not introduce significant errors if the variance of the
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landscape around each state (energy minimum) in the neglected
dimensions is similar. For instance, we found that the protein-
folding data could be reduced to five dimensions while main-
taining accuracy (Supplementary Fig. 1), although additional
higher energy states may become evident in higher dimensions.
As an alternative to using Eq. (2) in the last stage of our approach,
a method such as maximum caliber63–65, which does not take the
derivatives of landscape topology into account, could be supplied
with the sizes of the energy barriers and used to infer MFPTs.
However, we found that owing to the dependence of the MFPTs
on the prefactors in Eq. (2) for different transitions, this techni-
que could not recover all transition rates accurately for either
proteins or gene-regulatory networks (Supplementary Fig. 4).
Overall, our theoretical results demonstrate the benefits of com-
bining an analytical PDF with a linear dimensionality reduction
technique so that the neglected dimensions can be accounted for
explicitly.

Rapidly advancing imaging techniques, such as cryo-EM, will
allow many snapshots of biophysical structures to be taken at
the atomic level in the near future3,21,22,28,66,67. A biologically
and biophysically important task will be to infer dynamical
information from such instantaneous static ensemble mea-
surements. The protein-folding example in Fig. 2 suggests that
the framework introduced here can help overcome this major
challenge; in principle, the framework requires only the pair-
wise distances between recognizable features of the protein as
input (here we used the carbon alpha coordinates). Another
promising area of future application is the analysis of single-cell
RNA-sequencing data quantifying the expression within indi-
vidual cells23. Related to this application, Fig. 3 demonstrates
that our protocol recovers state-switching pathways in multi-
stable gene-regulatory networks, which are thought to underlie
cell-fate decisions. These results are most relevant in low-
molecule-number regimes, in which noise is known to be an
important factor68. In relevant recent work, an effective non-
parametric energy landscape of single-cell expression snapshots
was inferred using the Laplacian of a k-nearest neighbor graph
on the data, allowing lineage information to be derived via a
Markov chain15. The GMM-based framework here provides a
complementary parametric approach for reconstructing faithful
low-dimensional transition state dynamics from such high-
dimensional data.

Furthermore, the proof-of-concept results in Fig. 4 suggest that
our inference scheme for Markovian network dynamics can be
useful for studying viral and bacterial evolution, which are often
modeled as movements through a series of DNA or protein
sequences69. The fitness landscape of an organism in sequence
space is analogous to the negative of an effective energy land-
scape. The process of fixation by a succession of mutants in a
population, whereby each mutant replaces the previous lineage as
the population’s most recent common ancestor, has been mod-
eled as a Markov process70. Successive sweeps to fixation have
been observed in long-term evolution experiments, promising
groundbreaking data for future analysis as whole-genome
sequencing technologies improve71.

The inference protocol opens the possibility to analyze pre-
viously intractable multi-phase systems: many high-dimensional
physical, chemical, and other stochastic processes can be descri-
bed by a Fokker–Planck dynamics1, with phase equilibria corre-
sponding to maxima of the stationary distribution. By taking
near-simultaneous measurements of many subsystems within a
large multistable Fokker–Planck system, the above scheme allows
the inference of coexisting equilibria and transition rates between
them. Other possible applications may include neuronal expres-
sion11 and social networks17,24, which have been described in
terms of effective energy landscapes.

Although we focused here on normal white-noise diffusive
behavior, as is typical of protein-folding dynamics, the above
ideas can in principle be generalized to other classes of stochastic
exploration processes. Such extensions will require replacing Eq.
(2) through suitable generalized rate formulas, as have been
derived for correlated noise1. Conversely, the present framework
provides a means to test for diffusive dynamics: if the MFPTs of
an observed system differ markedly from those inferred by the
above protocol, then either important degrees of freedom have
not been measured, the system is out of equilibrium on mea-
surement time scales, or the system does not have Brownian
transition statistics, necessitating further careful investigation of
its time dependence.

By construction, the above framework is applicable to systems
whose steady-state dynamics is approximately Markovian and
can be described by a Fokker–Planck-type dynamics. This broad
class includes thermal equilibrium systems as well as non-
equilibrium systems that can be approximated by effective equi-
librium theories72,73. However, such approximations can become
inaccurate if probabilistic non-equilibrium fluxes dominate the
system dynamics74. For example, reconstructing dynamical gene-
expression information from static snapshots is sometimes pos-
sible in the presence of oscillatory dynamics caused by processes
such as the cell cycle, but can fail for gene networks with large
oscillations that are not orthogonal to the processes of interest15.
Adapting the above protocol to reconstruct the dynamics in the
latter case, and of far-from-equilibrium systems in general, will
require incorporating more sophisticated theories that include
time-resolved information75–78 and improved expressions for
non-equilibrium transition rates79, and account for probabilistic
fluxes80.

To conclude, the conformational dynamics of biophysical
structures such as viruses and proteins, and the state-switching
dynamics of noisy gene-regulatory networks, are characterized by
their metastable states and associated transition networks, and
can often be captured through Markovian models. Current
experimental techniques, such as cryo-EM or RNA-sequencing,
provide limited dynamical information. In these cases, transition
networks must be inferred from static snapshots. Here we have
introduced and tested a numerical framework for inferring
Markovian state transition networks via reconstructed energy
landscapes from high-dimensional static data. The successful
application to protein-folding, gene-regulatory network, and viral
evolution pathways illustrates that high-dimensional energy
landscapes can be reduced in dimension without losing relevant
topological information. In general, the inference scheme
presented here is applicable whenever the dynamics of a high-
dimensional physical, biological, or social system can be
approximated by diffusion in an effective energy landscape.

Methods
Population landscapes. A GMM was used to represent the PDF, or population
landscape, of samples. The PDF at position x of a GMM with C mixture com-
ponents in d dimensions is

pðxÞ ¼
XC
i¼1

ϕipiðxÞ

piðxÞ ¼
exp � 1

2 x � μi
� �T

Σ�1
i x � μi
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πΣið Þp ;

where ϕi are the weights of each component, μi are the means, and Σi are the
covariance matrices. More details on GMMs and how they were fit to data are
given in the Supplementary Methods.

Mean first passage times. We form a discrete-state continuous-time Markov chain
on states given by the minima of the energy landscape. For a pair of states α and β
directly connected by a minimum-energy pathway via a saddle, we approximate the
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transition rate α ! β by the Kramers rate kαβ in Eq. (2), whereas if α and β are not
directly connected we set kαβ ¼ 0. Given these rates, the Markov chain has generator
matrixMαβ whereMαβ ¼ kαβ for α≠ β andMαα ¼ �P

β:β≠αkαβ . Then the matrix ταβ
of MFPTs (hitting times) for transitions α ! β satisfies

X
γ

Mαγτγβ ¼ �1 for α ≠ β; ταα ¼ 0:

Protein data pre-processing. Protein-folding trajectories were obtained from all-
atom MD simulations performed by D.E. Shaw Research38. Data were subsampled
by a factor of 5 to reduce the size. For some proteins, residues at the flexible tails of
proteins were removed from the dataset to reduce noise. Pairwise distances
between carbon alpha atoms on the protein backbone were taken, with a cutoff of
6–8Å, depending on the size of the protein; any distance above the threshold was
taken to be equal to the threshold. This vector of pairwise distances was used as
input to PCA, to reduce dimension. The first five principle components of the
protein data were found to be sufficient for inference of energy landscapes and
transition networks (Supplementary Fig. 1).

Gene-regulatory network simulations. Gene-regulatory network motifs were
simulated using a Gillespie SSA in the SimBiology toolbox in Matlab. A full list of
the reactions simulated for each motif, as well as the values of the parameters used,
is given in the Supplementary Methods and in the simulation code, which is
available from Github (see Code availability).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Two publicly available datasets were used in this study. Protein-folding trajectories38 are
available from D.E. Shaw Research (https://www.deshawresearch.com/). HIV
sequences50 are available from https://hiv.biozentrum.unibas.ch/. Gene-regulatory
network simulation data are available upon request, or can be generated by running the
simulation code available from Github (see Code availability).

Code availability
The source code used in this study to learn a dynamical transition network and mean
first passage times from a Gaussian mixture model is publicly available from Github
(https://github.com/philip-pearce/learning-dynamical). Also included are all data
processing codes required to convert the raw data used in this study into the appropriate
format and the simulation code for the gene-regulatory network simulations.
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