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Many active fluid systems encountered in biology are set in total geometric confinement. Cytoplasmic

streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying molecular motors

move along polymer filaments and generate coherent cell-scale flow. When filaments are not fixed to the

cell periphery, a situation found both in vivo and in vitro, we observe that the basic dynamics of streaming

are closely related to those of a nonmotile stresslet suspension. Under this model, it is demonstrated that

confinement makes possible a stable circulating state; a linear stability analysis reveals an activity

threshold for spontaneous autocirculation. Numerical analysis of the longtime behavior reveals a

phenomenon akin to defect separation in nematic liquid crystals and a high-activity bifurcation to an

oscillatory regime.
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Cytoplasmic streaming is the deliberate, driven motion
of the entire contents of large eukaryotic cells. It is effected
by cargo-laden molecular motors walking along polymer
filaments and entraining the surrounding fluid [Fig. 1(a)];
the combined action of many of these motors can generate
flow speeds in excess of 100 �m=s for certain freshwater
algae. While inroads are being made into understanding its
function [1,2], surprisingly little is known about how it is
initially established within cells.

In a remarkable, yet apparently little-known investiga-
tion into the development of streaming, Yotsuyanagi [3] in
1953 examined isolated droplets of cytoplasm forcibly
extracted from algal cells. He observed a progression
from isolated Brownian fluctuations to a coherent, global
circulation of the entire droplet contents [Fig. 1(b)].
However, we need not limit ourselves to ex vivo experi-
ments: Kamiya [4] describes a similar blooming of rota-
tional cyclosis in the development of Lilium pollen cells,
and Jarosch [5] quantitatively analyzed the same disorder-
to-order transition occurring within Allium cells over the
course of a few hours. Based on these observations, one is
led to ask: is it possible that a simple self-organization
process could lie at the heart of streaming?

When the filaments are not locked in position, as is
likely in Yotsuyanagi’s experiments, a cargo-carrying mo-
tor walking on a free filament constitutes a force dipole.
Therefore, these cytoplasmic dynamics belong to the bur-
geoning field of active fluids. With roots in self-organizing
flocking models [6], an active fluid is a suspension of force
dipoles interacting via short- and long-range forces: a
system like a liquid crystal but with continuous injection
of energy at the microscale. Such systems generically
possess spontaneous flow instabilities [7] and can exhibit
complex patterns and flows [8], including asters and vor-
tices [9–11], laning [12,13], and density waves [11–13].
Spontaneous flow, in particular, is a key characteristic of

flocking dynamics [6] and assumes an important role in
applications such as cortex remodeling processes [14].
Despite the ubiquity of relevant situations, of which

streaming is a major example, the influence of total con-
finement is relatively little-studied. Kruse et al. [9] in-
cluded a finite domain in their study of single defect
stability in polar gels, assuming perfect alignment every-
where bar the defect core, and found a dependence of aster
and vortex stability on domain size. More recently,
Schaller et al. [15] underlined the critical importance of
long-range hydrodynamics in confined systems: swirling
patterns were observed experimentally in a totally confined
actin motility assay but were absent in cellular automaton
simulations. They concluded that confined flows are re-
sponsible for the formation and stability of the global
circulation. It seems reasonable, therefore, to posit that
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FIG. 1 (color online). Cytoplasmic streaming in vivo and
ex vivo. (a) A molecular motor attached to a vesicle
(i) encounters a filament, (ii) binds and walks along it, entraining
fluid, before (iii) unbinding stochastically. (b) A drop of cyto-
plasm extracted from a plant cell transitions from random
Brownian fluctuations to ordered circulation [3].
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combining confinement with the spontaneous flow charac-
teristics of active fluids will lead to circulatory streaming
states. Indeed, such effects were taken advantage of by
Fürthauer et al. [16] to construct theoretically a ‘‘Taylor-
Couette motor,’’ albeit in a geometry topologically distinct
from a single confined chamber.

Through theory and simulation, we show here that the
combination of confinement and activity allows for the
emergence of stable self-organized rotational streaming.
This is achieved using a ground-up approach employing
closure techniques new to active suspension theory. Our
model assumes that short, rigid filaments are suspended in
a Newtonian, zero Reynolds number fluid, and that they
exert extensile, or ‘‘pusher,’’ dipolar forces on the fluid; this
can be viewed as the effect of processive molecular motors
landing randomly along a filament and walking toward one
end, implying an average motor location forward of the
filament midpoint. The suspension is taken to be dilute, so
filaments interact via hydrodynamics only, and is confined
within a no-slip sphere of diameter L.

Working in d dimensions, we generalize the standard
kinetic approach to these systems [17]. The spatial and
angular distribution function �ðx;p; tÞ of the filaments,
where jpj ¼ 1, satisfies a Smoluchowski equation

@�

@t
¼ �rx � ð _x�Þ � rp � ð _p�Þ; (1)

where rx � @=@x and rp � ðI� ppÞ � @=@p. The spatial
and rotational fluxes are

_x � uþ Vp� DðsÞ � rx log�;

_p � ðI� ppÞ � ð�EþWÞ � p�DðrÞrp log�;

where V is a self-advection speed, � 2 ½�1; 1� is a shape
parameter (� ! 1 for a slender rod), DðsÞ is a spatial

diffusion tensor, and DðrÞ is a rotational diffusion constant.
The fluid has velocity field u, rate-of-strain tensor E �
ðruþ ruTÞ=2, and vorticity tensor W � ðru� ruTÞ=2.
The filament pusher stresslet of strength �>0 generates a
stress tensor � � ��

R
p dpðpp� I=dÞ� that drives fluid

flow by the Stokes equation ��r2uþ r� ¼ r �� with
viscosity � and pressure �, subject to incompressibility
r � u ¼ 0. Confinement induces the no-slip boundary con-
dition u ¼ 0 on jxj ¼ L=2.

While simulations of the full system (1) are possible
[17–19], here we develop evolution equations for the pri-
mary orientation moments [20–22]. Given the orientational
average h�i � R

p dp��, define the concentration c�h1i,
polar moment P � hpi, and nematic moment Q �
hpp� I=di. Equations of motion for these fields in terms
of higher moments can then be derived by taking appro-
priate weighted integrals of Eq. (1) [23].

We pare down complications by specializing to two
dimensions (d ¼ 2), rodlike particles (� ¼ 1), and iso-

tropic diffusion (DðsÞ ¼ DðsÞI) and neglect self-advection

(V � 0). This last assumption decouples the c dynamics
into pure advection diffusion and eliminates all polar in-
teractions, so we take a constant concentration c � c0 and
neglect P. However, the remaining Q dynamics still de-
pends on the fourth moment contraction hppppi:E, and a
closure is needed. Typically, this is done by taking the
distribution � to be a functional purely of the first three
moments, yielding a closure linear in Q [22]. In dense
active systems, this is permissible, owing to the presence
of local interaction terms in higher powers of Q; here,
however, it is the above fourth moment term which pro-
vides all stabilizing nonlinearities, so greater care must be
taken. Instead, we adopt a new approach by adapting a
closure of Hinch and Leal [24] to d ¼ 2, yielding

hppppi:E � 1

4c0
½4Q � E �Qþ 2c0ðE �QþQ � EÞ þ c20E

� 2IQ2:E�:

This is derived in [24] as an interpolation between
exact closures for the regimes of total order and disorder,
giving a simple approximation to the hydrodynamic non-
linearities. After nondimensionalizing by rescaling x !
Lx, t ! ðc0L2=�Þt, u ! ð�=c0LÞu, � ! ð�2=c0L

2Þ�,
�!ðc0L2=�2Þ�, and Q ! c0Q, the final model reads

DQ

Dt
¼ dðsÞr2Q� 4dðrÞQþ 1

2
E� 2Q � E �Q; (2)

where D=Dt � @=@tþ u � r, with nondimensional diffu-

sion constants dðsÞ � ðc0=�ÞDðsÞ and dðrÞ � ðc0L2=�ÞDðrÞ.
This is subject to the Stokes equation �r2uþ r� ¼
��0r �Q and incompressibility r � u ¼ 0 with nondi-
mensional dipole stress �0 � ðc0L=�Þ2�. The fluid
boundary condition reads u ¼ 0 on jxj ¼ 1=2. Among
the variety of admissible boundary conditions on Q, we
focus here on the natural condition N � rQ ¼ 0, where N
is the boundary normal vector. Qualitatively similar results
are found with fixed boundary-parallel or boundary-
perpendicular conditions [23].
The model (2) has the structure of a Landau theory for

the order parameterQ. As E is linear in the velocity u, and
u is (nonlocally) linear in �0Q via the Stokes equation, the
term ð1=2ÞE / �0Q. It follows in the usual manner that
there is an effective linear term in Q that will become
positive for sufficiently large activity �0 relative to

�4dðrÞ. If this is sufficient to overcome the diffusive stabi-

lization dðsÞ, then the amplitude of the ensuing instability
will be limited by the nonlinear term 2Q � E �Q / Q3.
We first seek a steady nonflowing axisymmetric state

Q0. In polar coordinates� ¼ ðr; �Þ, the tensor Laplacian of
Q has primary components

ðr2QÞr� ¼ LQr� � 1

r

@

@r

�
r
@Qr�

@r

�
� 4

r2
Qr�;
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while the others follow from symmetry and the traceless-
ness of Q. Equation (2) therefore implies Q0

rr and Q0
r�

each satisfy a (modified) Bessel equation in z � 2�r,

viz. z2@2zQ
0
r� þ z@zQ

0
r� � ðz2 þ 4ÞQ0

r� ¼ 0, where �2�
dðrÞ=dðsÞ. Thus, Q0

r� / I2ð2�rÞ; since I2 is monotonic, the
boundary conditions imply Q0 ¼ 0 everywhere.

Now, perturb axisymmetrically: letQ ¼ �R, � � 1, and

write u ¼ �v�̂ and E ¼ �e for the induced flow (which
has no radial component by incompressibility). Seek an
exponentially growing state such that @tR ¼ sR. Then, to

Oð�Þ, the perturbation obeys sR¼dðsÞr2R�4dðrÞRþ 1
2e.

To determine e, we employ the technique of Kruse et al. [9]

and write the Stokes equation as r � ð� ~�Iþ2e��0RÞ�
r ��tot¼0. The r component determines ~�. The � com-
ponent reads @r�

tot
r� þ ð2=rÞ�tot

r� ¼ 0, so, for�tot
r� analytic at

r ¼ 0, we find �tot
r� ¼ 0, i.e., er� ¼ ð�0=2ÞRr�. Finally,

err ¼ 0, as there is no radial velocity component. The
perturbation therefore satisfies

dðsÞLRrr ¼ ð4dðrÞ þ sÞRrr; (3)

dðsÞLRr� ¼
�
4dðrÞ þ s� �0

4

�
Rr�; (4)

which are still of Bessel form. When s >�4dðrÞ, Eq. (3)
has a solution in terms of I2, so boundary conditions imply

Rrr ¼ 0. Now, let � � ð4dðrÞ þ s� �0=4Þ=dðsÞ and write
Eq. (4) as LRr� ¼ �Rr�. For � > 0, this again gives solu-
tions in terms of I2, and so Rr� ¼ 0. However, for � < 0

(i.e., sufficiently large �0), the solution is instead Rr� /
J2ð

ffiffiffiffiffiffiffiffi��
p

rÞ. Applying the boundary condition R0
r�ð1=2Þ ¼ 0

yields the eigenvalue � ¼ �4y20 in terms of y0 � 3:054,
the first positive point satisfying J02ðy0Þ ¼ 0. This implies
that the homogeneous disordered state is unstable to a
spontaneously flowing mode when �>��, where (in
physical units)

�� ’ 16�

c0

�
9:33

DðsÞ

L2
þDðrÞ

�
; (5)

which we verified numerically by simulations of Eq. (2).
Stability analysis in the unbounded case elicits instabil-

ity of a long-wavelength band when �0 > 16dðrÞ (see also
[17]), compatible with the L ! 1 limit of Eq. (5). This
illustrates the action of confinement as a strong constraint
on the available excitation modes, allowing for selection of
a single circulation mode as opposed to a band of wave
numbers. Similar spontaneous flows have been observed in
active nematic models under periodic conditions [13], but
the excited modes exhibit ‘‘laning’’ flows, as opposed to
the circulation seen here. To lend perspective, we consider
typical values of the material properties. The stress ampli-
tude can be expressed as � ¼ f‘, where f is the (typically
pN) force exerted by motors and ‘ is the (typically �m)
separation of the opposing forces of the stresslet. For

micron-size rods, we expect DðrÞ � 0:01 s�1 and DðsÞ �

10�9 cm2=s, so, for system sizes L * 10 �m, rotational
diffusion dominates in Eq. (2). Then, for a fluid of the
viscosity of water in an idealized slab geometry, the insta-
bility will set in at c0 * 108 cm�3, corresponding to a
volume fraction well below 10�3.
In order to confirm that the circulating configuration is

steady at long times, wemust turn to simulations of the fully
nonlinear dynamics. In the following numerical studies, we
vary the dipolar activity �0 while fixing the diffusion con-

stants at dðrÞ ¼ dðsÞ ¼ 0:025 and use the eigendecomposi-
tion Q¼Sðnn�I=2Þ, where the order parameter S and
(headless) director n are the degree of local alignment
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FIG. 2 (color online). Numerical results beyond the spontane-
ous circulation threshold. (a),(b),(c) Simulated schlieren textures
of nematic order director n [i.e., density plot of ðnxnyÞ2]. Lighter
shades correspond to diagonally oriented filaments, darker
shades to horizontal or vertical filaments. (a) Steady circulation
with a central spiral defect at low activity (the left overlay shows
order field n), (b) steady central defect separation into a pair of
hyperbolic defects, and (c) snapshot of oscillatory behavior with
widely separated mobile defects. (d) Flow streamlines for low
activity, showing circulation about the system center; darker
streamlines indicate faster flow. (e) Enlargement of the nematic
director field structure in texture (b), showing two hyperbolic
defects. (f) Flow streamlines for high-activity oscillation asso-
ciated with texture (c), exhibiting off-center flow circulation. In
all cases, dðrÞ ¼ dðsÞ ¼ 0:025.
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and the average alignment direction, respectively. For
sufficiently weak activity above ��, a stable steady state
emerges of circulation about the system center [Figs. 2(a)
and 2(d)]. The spiral pattern of the nematic director field is
reminiscent of the predictions of Kruse et al. [9] for polar
systems (see also [10,25]). Higher mode contributions can
be examined by expanding the order parameter as Sðr;�Þ¼P

nSnðrÞein� and applying an appropriate n¼0 mode ex-

pansion S0ðrÞ ¼
P1

m¼0 S
ðmÞ
0 J2ð2ymrÞ, where J02ðymÞ ¼ 0

and ym < ymþ1. Mode amplitudes can then be extracted
using orthogonality of the radial basis. Figure 3 shows the

steady-state values of the first three amplitudes jSðmÞ
0 j as

functions of �0.
At larger values of �0, the steady state exhibits defect

separation: the central axisymmetric spiral defect in the
nematic director field (with topological charge þ1) splits
into two closely spaced hyperbolic defects (each of charge
þ1=2), illustrated in Figs. 2(b) and 2(e). The system still
possesses fluid circulation about the central axis, due to the
symmetric positioning of the defects. Defect separation is
perhaps unsurprising if we make contact with liquid crystal
theory; for approximately isolated defects, the free energy
penalty per defect is proportional to the square of its
topological charge [26], rendering two þ1=2 defects fa-
vorable over a single þ1 spiral. Indeed, de las Heras et al.
[27] recently investigated the equivalent confined setup for
a microscopic two-dimensional liquid crystal and always
encountered defect separation.

As �0 is increased beyond a new critical value, the
steady state is unstable and the system bifurcates into a
regime of periodic oscillation, where the time symmetry is
broken. The þ1=2 defect pair [Fig. 2(c)] execute periodic
‘‘orbits’’ around each other, with the flow circulation cen-
ter offset from the origin [Fig. 2(f)], following a quasicir-
cular trajectory [Fig. 4(c)]. These states can be analyzed by
examining the correlation function [15]

�ð	Þ �
�hvðx; tÞ � vðx; t� 	Þix

hvðx; tÞ � vðx; tÞix
�
t
;

where the temporal average is taken over late times when
the oscillatory state is fully established. Extracting the
amplitude A of oscillation of� [Fig. 4(b)], we numerically
determine a bifurcation diagram as a function of �0, as in
Fig. 4(a). There is a clear threshold for the onset of periodic
oscillations. A similar oscillatory bifurcation has been
observed by Giomi et al. [13] for a dense active nematic
in a channel geometry, suggesting that such behavior may
be a fundamental property of active nematics, although the
exact form taken will be heavily dependent on geometry
and topology. Were this system an annulus, rather than a
disk, behavior more closely resembling the ‘‘back and
forth’’ oscillations of [13] could be conjectured as a regime
beyond the spontaneous flow of [16].
Motivated by principles of cytoplasmic streaming, we

have constructed a clean, simple model for a dilute sus-
pension of extensile force-generating filaments in total
geometric confinement and have demonstrated that inclu-
sion of elementary hydrodynamics is entirely sufficient to
yield spontaneous self-organization, in spite of the absence
of more complex local interaction terms. In an experimen-
tal realization, the prediction of a critical activity for
transition from quiescence to circulation can be tested by
varying the viscosity or motor activity, perhaps through
temperature or adenosine triphosphate (ATP) concentra-
tion. Modern realizations of Yotsuyanagi’s experiment
could provide a wealth of information on this type of
bifurcation.
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FIG. 3 (color online). Details of the bifurcation to circulation.

(a) Numerically evaluated steady-state amplitudes jSðmÞ
0 j of

Bessel series expansion for the axisymmetric part of the order
parameter S at varying activity �0, with dðrÞ ¼ dðsÞ ¼ 0:025.
(b)–(d) Profiles of S at indicated points (b)–(d) in (a).
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FIG. 4 (color online). Secondary bifurcation to oscillatory
dynamics. (a) Amplitude of oscillation of the velocity correlation
function �ð	Þ vs �0, with dðrÞ ¼ dðsÞ ¼ 0:025, showing a bifur-
cation from steady defect separation to oscillatory behavior at a
critical value of �0. (b) �ð	Þ for �0 ¼ 32, showing periodic
oscillatory behavior. (c) Position of the flow circulation center
over time for �0 ¼ 32:75 during one oscillation period.
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Sekimoto, Phys. Rev. Lett. 92, 078101 (2004).

[10] J. Elgeti, M. E. Cates, and D. Marenduzzo, Soft Matter 7,
3177 (2011).

[11] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K.
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