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This document is organized as follows. We first present a deri-
vation of the model dynamics from the full Smoluchowski
equation and nondimensionalization of all parameters. Following
this, we give a linear stability analysis and the subsequent rea-
soning for the selected filament-forcing relationship. We then
investigate the intricate pattern-forming dynamics of the model by
studying the reduced z-independent system. Finally, we briefly
discuss interpretations of streaming pathologies within this model.

Model
Geometry. The Chara cell cytoplasm is modeled as a cylindrical
shell of radius R and length L, endowed with periodic boundary
conditions for all fields unless otherwise noted. The shell is
parameterized with standard cylindrical coordinates ðθ; zÞ, with
θ∈ ½0; 2πÞ and z∈ ½0;LÞ. On a cylindrical shell, the gradient op-
erator reads

∇= eθ
1
R

∂
∂θ

+ ez
∂
∂z
;

and so the Laplacian is equivalent to the Cartesian Laplacian
with a spatial scaling by R. After nondimensionalization of space
by R, this factor will disappear and the gradient operator be-
comes identical to Cartesian space.

Smoluchowski Equation and Derivation.To derive the actin filament
suspension dynamics, we begin by writing down a Smoluchowski
equation for the spatial and orientational filament density (1, 2).
At every point x= ðθ; zÞ on the cylinder, let Ψðx; pÞ be the
number density at position x of filaments with orientation p,
jpj= 1, where p points from the minus (pointed) end to the plus
(barbed) end. From this, we define the orientational averaging
operator:

h·i=
Z
p

· dp:

Then the filament concentration cðxÞ and polar moment PðxÞ are
given by the following:

c= h1i;
cP= hpi:

Now, suppose further that the filaments are suspended in a fluid
with associated flow field uðxÞ. The Smoluchowski equation reads

∂Ψ
∂t

=−∇x·
�
_xΨ
�
−∇p·

�
_pΨ
�
; [S1]

where ∇x = ∂=∂x, and ∇p = ðI− ppÞ · ∂=∂p is the gradient operator
on the unit circle. The one-filament velocity is the following:

_x= eu+wp−DðsÞ∇x   log Ψ;

where e is the effectiveness of flow-advection (restriction), w is
the advection velocity of a filament by a myosin (self-advection),
and DðsÞ is the spatial diffusion constant. (Note w< 0; filaments
will be advected backward relative to the walk direction of the
myosin motors.) The one-filament orientational change schemat-
ically reads

_p= ðI− ppÞ·ðshear alignment+ flow alignment
+ directional bias+ polarization+ diffusionÞ:

The terms are as follows:

shear alignment= eΩ ·p
flow alignment= αuu
directional bias= − κðP · dÞd

polarization= αpP
diffusion= −DðrÞ∇p   log Ψ;

with αp; αu, the coupling constants for spontaneous polarization
and polar flow alignment, respectively; κ, the coupling for direc-
tional bias away from orientation in the d-direction; and DðrÞ,
the rotational diffusion constant. Ω is the Jeffery tensor, where
Ω=∇u for rodlike particles (3).
Taking the orientational average of Eq. S1 yields c dynamics

reading
∂c
∂t
+∇ · ½ðeu+wPÞ c�=DðsÞ∇2c:

Multiplying Eq. S1 by p and taking the orientational average
gives dynamics of cP. Inserting the above c dynamics then yields
final P dynamics of

∂P
∂t

+ ðeu+wPÞ ·∇P=DðsÞ
�
∇2P+

2
c
∇c ·∇P

�
−DðrÞP

+ ðI−ppÞ · �eΩ ·P+ αpP+ αuu− κðP · dÞd�;
after applying the elementary Doi-like (4) closures hppi ’ cPP
and hpppi ’ cPPP.

Flow Field.To close the system, we must define the hydrodynamics
of the flow field uðxÞ. Owing to the low velocities and length
scales involved, we take u to obey the 2D incompressible Stokes
equations with friction and forcing terms, viz.,

−μ∇2u+ νu+∇Π=F; ∇ · u= 0;

where μ is the viscosity, ν is the friction coefficient, ΠðxÞ is the
pressure field, and FðxÞ is the flow forcing. Incompressibility and
friction are consequences of the inner and outer radial bound-
aries sandwiching the layer of cytoplasm and arise on radial
averaging, as we will now discuss.
The incompressibility arises from the proximity of the vac-

uolar membrane to the cytoplasm. Certainly the cytoplasm
is three-dimensionally incompressible, but on radial averaging
it need not automatically become two-dimensionally incom-
pressible. However, the vacuolar membrane adjacent to the
cytoplasm is a lipid bilayer, which behaves as a true two-
dimensionally incompressible fluid (5). A no-slip boundary
condition between the cytoplasm and membrane therefore
implies that the radially averaged cytoplasm remains approxi-
mately incompressible.
The friction term can be viewed as the effect of the other radial

boundary on the cytoplasmic layer, the chloroplast/cortical layer
to which the filaments adhere. This acts as an outer no-slip
boundary yielding a local shear flow profile radially. Upon depth
averaging, this becomes a friction term, similar to flow in aHele–
Shaw cell (6).
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Finally, we impose a further condition on the flow field to
mimic the effects of the flux-limiting end caps of a cell. To this
end, we prescribe the zero-flux condition:

Z2π
0

ZL
0

u · ez dzdθ= 0:

This prevents a net axial flow that would be impossible in a capped
cell owing to the cytoplasm incompressibility. However, to sup-
port such a condition we require an additional degree of freedom,
which we insert into the pressure field ΠðxÞ by allowing a non-
periodic linear pressure gradient:

ΠðxÞ=Π0z+Π′ðxÞ;

where Π′ðxÞ is a periodic pressure field supporting incompressi-
bility. Π0 then acts to support any net upward forcing.
To completely close the system, we must specify the forcing F in

terms of the filament field P. Naively, one might take F∝P; how-
ever, this is unsuitable for our model. We postpone the reasoning
until the linear stability analysis and simply state here that we will
take F=ΦjPj2 P, where Φ is a force proportionality constant.

Nondimensionalization. Define the total filament numberZ
A

c dA= c0jAj

over the cylinder surface A with area jAj, so c0 is the mean
filament concentration. We choose a friction-based timescale

τ≡
c0
ν
:

We choose to scale all lengths by the cylinder radius R. Then
using c0; τ;R, we can nondimensionalize all parameters and var-
iables as follows. Variables scale as follows:

x=Rx̂
t= τ̂t
u=Rτ−1û=Rνc−10 û
c= c0ĉ
Π= ν2R2c−10 Π̂ :

Parameters scale as follows:

L=Rℓ
μ= νR2μ̂
Φ= ν2Rc−10 F̂
w=Rτ−1ŵ=Rνc−10 ŵ

DðsÞ =R2τ−1dðsÞ = νR2c−10 dðsÞ

DðrÞ = τ−1dðrÞ = νc−10 dðrÞ

αu =R−1α̂u
αp = νc−10 α̂p
κ= νc−10 κ̂:

This eliminates ν in the nondimensional system. We can elimi-
nate Φ̂ by further rescaling as follows:

û= Φ̂ û̂

Π̂ = Φ̂ Π̂^

e= Φ̂ −1ê

α̂u = Φ̂ −1 α̂̂u:

Under the above scalings, ν;Φ;R; c0 are eliminated. Note also
that the cylinder now has nondimensional length ℓ.

Zero-Walk Approximation. If we assume that friction is high enough
such that a filament can be considered stationary when a myosin-
coated vesicle walks along it, then we can takew= 0. This important
simplification reduces the c dynamics to pure incompressible
advection–diffusion, which allows us to then neglect concentra-
tion fluctuations. Under this approximation and in nondimen-
sional variables (with all hats on variables now removed), the final
system reads

−μ∇2u+u+Π0ez +∇Π′= jPj2 P;

subject to

∇ · u= 0;  
Z2π
0

Z ℓ

0

u · ez dz dθ= 0;

with

∂P
∂t

+ eu ·∇P= dðsÞ∇2P− dðrÞP+ ðI−PPÞ · ½eΩ ·P

+ αuu+ αpP− κðP · dÞd�:
In what follows we set the repulsive direction d= eθ.

Linear Stability and Flow Forcing. To determine linear stability of
the disordered state P= 0, write P= η~P+Oðη2Þ, η � 1 and
u= η~u+Oðη2Þ. Then to OðηÞ, the dynamics read

∂~P
∂t

= dðsÞ∇2~P− dðrÞ~P+ αu~u+ αp~P− κ
�
~P · eθ

�
eθ:

If ~u∼ ~P, then myosin-generated flow alone will drive instability.
However, when a totally disordered filament configuration has
been created experimentally, vesicles can still be observed to
walk along filaments without any global regeneration of ordered
streaming (7). Therefore, it is important that this αu term does
not contribute to spontaneous organization, and so we must have
~u of higher order than η. This corresponds to a higher-order flow
forcing F, so we take the force field to be F= jPj2 P, as stated
previously, which yields ~u= 0 as desired.
Now, write ~P= P̂est+ik·x. Then

sP̂= − dðsÞjkj2 P̂− dðrÞP̂+ αpP̂− κ
�
P̂ · eθ

�
eθ:

Eigenvectors are eθ and ez, with eigenvalues

sθ = − dðsÞjkj2 − dðrÞ − κ+ αp;

sz = − dðsÞjkj2 − dðrÞ + αp:

Therefore, if αp > dðrÞ, then at least one mode is unstable.
Note that periodicity imposes the quantization k= neθ + ð2π=ℓÞ

mez, n;m∈Z.

A Side Note on Closure. Earlier, we used the simple moment clo-
sures hppi ’ cPP and hpppi ’ cPPP. This is a very strong re-
duction, similar in character to that of Doi (4) who closed the
fourth moment of a nematic distribution as the product of its
two second moments. However, these approximations are in-
accurate in two key manners: they do not satisfy elementary in-
dex-contraction identities, i.e., hpipii= c and hpipjpji= cPi, and
the second-moment closure is not correct in the limit of isotropy,
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where P= 0 and hppiiso = I=2. More precise closures built on the
first moment P that obey both of these criteria are as follows:D

pipj
E
’ cPiPj + ðc=2Þ�1−P2

	
δij;D

pipjpk
E
’ cPiPjPk + ðc=4Þ�1−P2

	�
δijPk + δjkPi + δkiPj

	
:

These can be viewed as interpolations between closures accurate
in the limits of isotropy and perfect alignment. The derivation
above can then be performed with these more complicated
expressions. This yields a dynamical system with far more nonlin-
ear terms; however, these are all of the same order, and we expect
no qualitative difference from the simpler closure we chose above.
The other change of note is in the coefficients of the terms linear
in αpP and αuu, which gain a factor of 1=2; this lowers the
threshold for spontaneous streaming emergence. Again, though,
this is a purely quantitative change. Given this, we believe that
using the simpler closure does not obscure the essential dynam-
ics and leads to a cleaner, more manageable system.
In fact, one does not need to make a closure at all to observe

the initial instability of the homogeneous, isotropic configuration;
this is the method used by Saintillan and Shelley (1) to derive
instability of dilute microswimmer suspensions. Starting with
the Smoluchowski Eq. S1 after nondimensionalization and the
zero-walk approximation, we linearize about the isotropic state
Ψ≡ 1=2π by letting

Ψ=
1
2π
�
1+ ηΨ′

	
;  η � 1:

With the nonlinear forcing used above, all hydrodynamic fields are
of high order, i.e., u;Ω=Oðη3Þ, so terms involving them can be
neglected, as designed. Then after some calculus we obtain

∂Ψ′
∂t

= dðsÞ∇2
xΨ′+ dðrÞ∇2

pΨ′+ αpp ·P′− κðp · dÞ�P′ · d	;
where P′≡

R
pΨ′p  dp is the perturbation polar order field. The

linear term αpp·P′ acts to drive spontaneous polarity, reinforcing
the mean polar order P′, which competes with diffusion and di-
rectionality. Thus, for sufficiently large αp, there will be an in-
stability of the isotropic state into local spontaneous polar
ordering. It is in this regime that closure systems then become
appropriate for understanding the nonlinear, long-time dynamics.

Reduced z-Independent System.To get a flavor of the more delicate
properties the model possesses from a dynamical systems point of
view, we will reduce to the z-independent and ez-parallel case.
Under this approximation, writing P=Pez and u= uez, the model
reduces to

∂P
∂t

= dðsÞ
∂2P
∂θ2

− dðrÞP+
�
1−P2	�αpP+ αuu

	
[S2]

subject to hydrodynamics

−μ
∂2u
∂θ2

+ u=P3 −
1
2π

Z2π
0

P
�
θ′
	3
dθ′;

where the pressure gradient Π0 has been solved for by using the
zero-flux condition

R 2π
0 u  dθ= 0.

Define a cyclosis solution PCðθÞ to be a steady-state configu-
ration possessing two antiparallel regions of equal width. We are
interested in two questions: are such states stable, and if they are,
can the system reach such a state from given initial conditions?

Cyclosis Instability When αu = 0. When αu = 0, the hydrodynamics
drop out entirely and Eq. S2 reduces to

∂P
∂t

= dðsÞ
∂2P
∂θ2

− dðrÞP+ αp
�
1−P2	P: [S3]

This is the one-dimensional Allen–Cahn equation (or Chafee–
Infante equation) describing evolution of a nonconserved order
parameter P in a symmetric bistable potential V ðPÞ satisfying
V ′ðPÞ= dðrÞP− αpð1−P2ÞP. The state P= 0 is an unstable equi-
librium, so for sufficiently small dðsÞ the system forms patterns of
values ±P*, where V ′ð±P*Þ= 0.
A cyclosis perturbation Pðθ; tÞ=PCðθÞ+ ηeλtϕðθÞ, η � 1, gen-

erates a Sturm–Liouville problem for the growth rate λ reading

λϕ= dðsÞϕ″−V ″ðPCÞϕ: [S4]

Ref. 8 then argues that there always exists an unstable mode, i.e.,
one with λ> 0, as follows. Fundamental Sturm–Liouville theory
tells us that there exists a discrete spectrum of eigenvalues fλng
satisfying λ0 > λ1 > λ2 >⋯> −∞, and that the eigenfunction ϕn
corresponding to eigenvalue λn changes sign precisely n times
within ½0; 2πÞ. Now, by differentiating Eq. S3, one can see that
ϕ=P′C is an eigenfunction of Eq. S4 with λ= 0. However, by
definition PC crosses the axis twice, so P′C crosses the axis once,
i.e., ϕ1 ∝ P′C and so λ1 = 0. Therefore, λ0 > λ1 = 0 by the ordering
property, rendering the cyclosis solution unstable.
As an aside, we note that, although the cyclosis solution is

unstable, the instability (which manifests as attraction and co-
alescence of the “fronts” between the ±P* regions) operates on
an extremely long timescale (8).

Cyclosis Stability When αu ≳ 0. When αu ≠ 0, we must include the
effects of hydrodynamics on steady-state stability. Intuitively,
one expects the hydrodynamics to stabilize the front co-
alescence and so render cyclosis stable, at least above some
threshold value of αu. This is indeed what occurs, with a re-
markably small threshold, as we will now discuss. To make
progress and to simplify matters, we will take μ= 0 to reduce
the hydrodynamics to

u=P3 −
1
2π

Z2π
0

P
�
θ′
	3
dθ′:

We can then substitute the hydrodynamics directly into Eq. S2 to
obtain the following:

∂P
∂t

= dðsÞ
∂2P
∂θ2

− dðrÞP+ αp
�
1−P2	P

+ αu
�
1−P2

	 
P3 −

1
2π

Z2π
0

P
�
θ′; t
	3

dθ′

!
:

[S5]

Performing the same perturbation to a cyclosis steady-state PC
of Eq. S5 as above yields a more general “nonlocal” eigenvalue
problem:

λϕ= dðsÞϕ″−W″ðPCÞϕ−
αu
2π
�
1−P2

C

	 Z2π
0

3PC
�
θ′
	2
ϕ
�
θ′
	
dθ′; [S6]

where the potential W ðPÞ satisfies W ′ðPÞ= dðrÞP− αpð1−P2ÞP
− αuð1−P2ÞP3. In the absence of the integral term, we could
make similar arguments as above and derive instability; here,
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however, the Sturm–Liouville theory does not apply, so we must
work harder and explicitly determine the eigenvalue spectrum.
In general, less is known about such nonlocal systems, but

progress is still possible. Ref. 9 demonstrates that the nonlocal
problem is intimately linked to the corresponding local problem,

νψ = dðsÞψ″−W″ðPCÞψ ;

in the following way: if ψn is an eigenfunction of the nonlocal
problem, with eigenvalue νn, then ϕ=ψn is an eigenfunction with
eigenvalue λ= νn if

R
3P2

0ψn = 0. Therefore, by symmetry argu-
ments, we at least retain the odd eigenfunctions ϕ2n+1 =ψ2n+1
with eigenvalues λ2n+1 = ν2n+1. In particular, we retain the eigen-
value λ1 = ν1 = 0, the translational mode with eigenfunction
ϕ1 ∝ P′C as discussed above for the case αu = 0.
It remains to determine whether there exist any positive

eigenvalues. At this stage, little further progress can be made
analytically as our system is not self-adjoint (9), so we study the
largest eigenvalues numerically. The base cyclosis state PC is
determined by seeding initial conditions purely in the k= 1
wavenumber and evolving this through time until steady state is
reached. A truncated Fourier expansion for ϕ is then used, re-
ducing the problem to determining eigenvalues of a matrix. If αu
is then varied while all parameters are held fixed, an eigenvalue
“trajectory” can be plotted; example trajectories for the largest
two eigenvalues for one particular parameter set are shown in
Fig. S1A. Finally, by interpolating to extract the crossover point
of these maximal eigenvalues, a critical value of αu can be de-
termined where the cyclosis state switches stability, being stabi-
lized for larger αu owing to flow effects.
Fig. S1B illustrates this critical boundary in the ðαp; αuÞ plane

with other parameters held fixed as in Figs. 4 and 5. The critical
values of αu quickly become negligible as αp increases, demon-
strating the powerful stabilizing effect of the flow reorientation.

Unidirectional Stability. We now consider the stability of the
unidirectional nonflowing solution PðθÞ≡P*. By Eq. S2, this
satisfies

P2
*
= 1−

dðrÞ

αp
;

so a constant solution only exists when αp > dðrÞ, i.e., when the
zero-state P= 0 is unstable. In the same manner as for the cy-
closis solutions, we perturb about this state by writing P=P* +
ηeλtϕðθÞ, η � 1. Then ϕ satisfies

λϕ= dðsÞϕ″−
�
W″
�
P*

	
− 2αuP4

*

�
ϕ

−3αu
�
1−P2

*

�
P2
*

1
2π

Z2π
0

ϕ
�
θ′
	
dθ′:

Note the extra term linear in ϕ compared with Eq. S6 owing to
the even parity of the constant base state rather than the odd
parity of a cyclosis solution. The constant solution ϕ≡ϕ0 has
growth rate

λ0 = − dðrÞ + αp
�
1− 3P2

*

�
= − 2αpP2

*
< 0;

so this mode is always stable. The other solutions are of the form
ϕ∝ einθ for positive integer n, with growth rates

λn = − dðsÞn2 −
h
W″
�
P*

	
− 2αuP4

*

i

= − dðsÞn2 − 2αpP2
*
+ 3

αu
αp

 
1−

dðrÞ

αp

!
dðrÞ:

From this, it is clear that the least stable mode is n= 1. Fig. S2
shows the contour λ1 = 0 as a function of ðαu; αpÞ with dðsÞ =
dðrÞ= 0:025. Although there is a region where the unidirectional
solution is unstable, it is relatively slim, indicating that for the
majority of parameter space there exists “bistability” in the system:
both the cyclosis solution and the unidirectional solution can co-
exist and be stable, so which one is selected depends upon their
respective basins of attraction. We will now see that the basin
of attraction for the unidirectional solution tends to shrink as
αu grows, leaving the cyclosis solution dominant for most initial
conditions.

Basin of Attraction. We now know that both cyclosis and unidi-
rectional solutions are usually stable. Because of this, the behavior
of the system from given initial conditions becomes important.
Indeed, as shown in the main text (Fig. 5), for smaller values of αu
the system can find both constant and cyclosis states depending
on the initial configuration, necessitating multiple runs with
different initial conditions to determine the typical behavior.
To understand this further, we will make explicit the compe-

tition between constant and cyclosis solutions by seeding
the reduced model (Eq. S2) with initial conditions of purely k= 0
and k= 1 modes in Fourier space; we denote these mode ampli-
tudes by ~P0 and ~P1. Initial conditions with ~P1 = 0 will always
develop into the constant solution, and conversely ~P0 = 0 will
always develop cyclosis. Adjusting the ratio ρ= ~P1=~P0 allows us to
numerically map out the basin of attraction as model parameters
vary by finding the critical crossover ρC separating initial con-
ditions leading to constant and cyclosis solutions.
Fig. S3 illustrates numerically determined critical crossover

curves ρCðαpÞ for different values of αu, with all other relevant
parameters held fixed as in the main text. As αu increases, it is
easy to see that the critical region quickly becomes small, in-
dicating that most random initial conditions will be attracted to
the cyclosis state, as desired.

Pathologies
As discussed in the main text, it is possible to replicate certain
pathologies and experimental streaming disruptions within our
model by adjusting parameters appropriately.
In ref. 10, binding between the cell membrane and the cell wall

is inhibited in Vallisneria mesophyll cells, causing actin cables to
reorient from longitudinal to circumferential, encircling the long
axis of the cell rather than running along it. Within our model,
inhibiting binding corresponds to raising the restriction param-
eter e and concomitantly lowering αu, as filaments have fewer
pinning points for polar reorientation to take effect. In addition,
κ is likely to fall owing to the pliability and mobility of the fila-
ments’ substrate giving less directionality and rigidity to any
chemical or geometric directors.
With similar results, ref. 11 documents actin cable re-

organization in Lilium pollen tubes by inhibiting microtubule
polymerization. Actin cables then reorient circumferentially in
the tip region where longitudinal microtubules are absent. The
microtubules can be viewed as imposing a directionality on the
actin; this is the origin of our repulsive direction d with coupling
constant κ. Depolymerizing the microtubules then corresponds
to setting κ≈ 0, in the same fashion as the previous study.
Fig. S4 illustrates a simulation run showing the emergence of

such a circumferential streaming pattern, with the parameter
values used specified in the figure caption.
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Fig. S1. (A) Sample trajectories of the two highest eigenvalues of the nonlocal problem (Eq. S6) as αu varies, for αp = 0:072, with dðsÞ =dðrÞ = 0:025. The kink
shows the eigenvalue crossover between instability and stability of cyclosis solutions. (B) Critical dividing line in ðαp; αuÞ space between instability and stability
of cyclosis solutions for long times, determined from eigenvalue trajectory crossovers as in A.
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Fig. S2. Stability curve for the unidirectional solution in the ðαu;αpÞ plane, for dðsÞ =dðrÞ = 0:025. The gray region denotes nonexistence of the base solution P*.
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Fig. S3. Curves of ρCðαpÞ dividing the basin of attraction between cyclosis and unidirectional solutions, for various values of αu (indicated). The right-hand
graph is an enlargement of the left with a shorter vertical scale.
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late time circumferential flowearly time disorder

Fig. S4. Emergence of a circumferential streaming state on inhibition of repulsive directions and restriction. Parameters are dðsÞ =dðrÞ= 0:025, μ= 0:05, e= 0:8,
κ= 0, αp = 0:8, and αu = 0:1, with ℓ= 5.
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