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H I G H L I G H T S

� Articular cartilage, a poroelastic medium, lubricates joints and spreads impacts.
� We model the biomechanics to explain the onset of mechanically induced degradation.
� Our model uses a new boundary condition accounting for the restrictive joint space.
� For a static load, we derive consolidation times depending on the flow restriction.
� A cyclic load shows compression waves and persistent regions of strain oscillation.

a r t i c l e i n f o

Article history:
Received 24 September 2014
Received in revised form
4 December 2014
Accepted 4 January 2015
Available online 12 January 2015

Keywords:
Tissue
Biomechanics
Aggrecan
Collagen
Poroelasticity

a b s t r a c t

Over ten percent of the population are afflicted by osteoarthritis, a chronic disease of diarthrodial joints
such as the knees and hips, costing hundreds of billions of dollars every year. In this condition, the thin
layers of articular cartilage on the bones degrade and weaken over years, causing pain, stiffness and
eventual immobility. The biggest controllable risk factor is long-term mechanical overloading of the
cartilage, but the disparity in time scales makes this process a challenge to model: loading events can
take place every second, whereas degradation occurs over many months. Therefore, a suitable model
must be sufficiently simple to permit evaluation over long periods of variable loading, yet must deliver
results sufficiently accurate to be of clinical use, conditions unmet by existing models. To address this
gap, we construct a two-component poroelastic model endowed with a new flow restricting boundary
condition, which better represents the joint space environment compared to the typical free-flow
condition. Under both static and cyclic loading, we explore the rate of gradual consolidation of the
medium. In the static case, we analytically characterise the duration of consolidation, which governs the
duration of effective fluid-assisted lubrication. In the oscillatory case, we identify a region of persistent
strain oscillations in otherwise consolidated tissue, and derive estimates of its depth and magnitude.
Finally, we link the two cases through the concept of an equivalent static stress, and discuss how our
results help explain the inexorable cartilage degeneration of osteoarthritis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As we walk and run around, our knees and hips endure forces
many times our body weight. They withstand these megapascal-
scale pressures (Hodge et al., 1986) thanks to a 1–4 mm thick
coating of articular cartilage on the ends of the bones in these
synovial joints (Hunziker et al., 2002). This coating performs two
vital roles: it allows the opposing bones to slide smoothly against

one another, and it protects the underlying bone from injurious
stress concentrations (Bader et al., 2011).

The construction of articular cartilage is remarkably simple
(Hunziker et al., 2002; Kiani et al., 2002), as illustrated in Fig. 1. A
solid matrix of collagen fibres entraps a high density of giant
(� 200 MDa) bottlebrush-shaped aggregates of aggrecan mole-
cules. Each aggrecan is itself also a large bottlebrush structure of
mass 1–3.5 MDa (Bathe et al., 2005), comprising many charged
glycosaminoglycans attached to a protein core. The charge density
induces a high osmotic pressure, which swells the cartilage with
water from the surrounding synovial fluid to form the tissue
interstitial fluid (Tepic et al., 1983). Interspersed throughout the
tissue are millions of chondrocyte cells, the only live components
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of articular cartilage, which synthesise all of the aggrecan and
collagen (Goldring and Marcu, 2009).

Articular cartilage functions through its mechanical properties
as a poroelastic medium: a porous elastic solid saturated with fluid.
At the instant of loading, the interstitial fluid bears all of the stress.
Driven by the pressure difference between the tissue and the
synovial space in the joint, water gradually exudes through the
cartilage surface into the synovial fluid, where it helps to lubricate
sliding of opposing cartilage faces in so-called mixed mode lubrica-
tion (Ateshian, 2009; Gleghorn and Bonassar, 2008; Katta et al.,
2008; McCutchen, 1962). As fluid is lost, the solid structure
progressively deforms, transferring the load to elastic compression
of the high-density aggregates. Finally, when the load is released,
the cartilage re-imbibes fluid and swells.

If the loading is sufficiently frequent, the cartilage does not
have time to re-swell to its original size each cycle. Instead, it
undergoes consolidation: it will progressively compress by a
greater fraction every time it is loaded, exuding less fluid and
therefore contributing less to lubrication, until a state of maximal
average compression and minimal average exudation is reached.

As well as affecting the elastic modulus, the high density of
aggregates also results in a low permeability of the solid to the
interstitial fluid, yielding a functional consolidation time of an
hour or more (Ateshian, 2009; Comper, 1991). During this time,
the coefficient of friction rises ten-fold (Gleghorn and Bonassar,
2008).

In healthy tissue, chondrocytes synthesise new material to
repair any damage caused by high levels of compression and
friction in late-stage consolidation. However, if damage overtakes
repair for some reason, the tissue gradually degrades over months
or years. This debilitating condition, termed osteoarthritis (OA) or
non-inflammatory arthritis, has a morbidity of over 10% of the
population and costs the economy hundreds of billions of dollars
every year in lost productivity (Bitton, 2009). Repairing the tissue
is difficult (Hunziker, 2002; Newman, 1998), and in serious cases
the only effective treatment may be surgical joint replacement.

The aetiology of OA is complex. Both genetic and behavioural
risk factors exist. Of the latter, abnormal joint loading is particu-
larly prominent. For instance, surgical alteration of the menisci—
tough rings of fibrocartilage in the knee which spread load over
the articular cartilage—often causes early onset OA (Papalia et al.,
2011), as does damage to ligaments, and certain occupations have
higher rates of OA (Coggon et al., 2000). In these scenarios, the
abnormal mechanical loading induces chondrocyte apoptosis and
damages the solid matrix (Chen et al., 2001; Grodzinsky et al.,
2000; Jones et al., 2009; Kurz et al., 2005; Sandell and Aigner,
2001). A vicious cycle begins: the depleted chondrocyte popula-
tion cannot fully repair the solid matrix, so subsequent loading of
the structurally compromised tissue causes more damage and
apoptosis, leading to further inadequate repair, and so-on (Goggs
et al., 2003). The onset of early-stage OA is therefore intimately
linked with the mechanical response of the cartilage as a function
of its integrity and loading patterns.

To quantify this response, we need a mechanical model. Early
linear ‘biphasic’ models codified the process of consolidation
(Ateshian et al., 1997), and complex finite element studies are
developing this further (Haemer et al., 2012; Mononen et al., 2012;
Pierce et al., 2013). Such studies predict large spatial variations of
strain and pressure (Suh et al., 1995; Wong and Carter, 2003) and
exhibit frequency dependent consolidation rates under cyclic
loading (Suh et al., 1995; Zhang et al., 2014). However, these
models are either prohibitively complex for use over the long time
scales of OA development, or lack pertinent in vivo details. In
particular, many studies use a free flow condition for the pore fluid
efflux when, in reality, the close proximity of other tissues will
restrict flow (Wong and Carter, 2003), potentially causing a
marked slowdown in the long-term consolidation rate (Halonen
et al., 2014).

In this paper we derive a simple, effective and tractable cartilage
mechanics model explicitly from aggrecan and pore fluid dynamics.
To model the effect of the narrow joint geometry in vivo, we
introduce a new flow restriction boundary condition. We then study
the model numerically and analytically, first under static and then
oscillatory loading. In both cases, we characterise the dependence on
loading and flow restriction of two key properties: the time taken to
consolidate, which corresponds to the duration of mixed mode
lubrication, and the strains experienced through the cartilage.

In the static case, we first illustrate the essential features of
consolidation before exploring the influence of flow restriction.
We show that greater restriction slows down consolidation, help-
ing to preserve cartilage integrity. We derive an approximate
relationship between the consolidation time scale, the applied
load and the tissue's biomechanical properties, and demonstrate
its robustness over a wide range of flow resistance values.

We then examine oscillatory loading, the more common usage
pattern. First, we show that low levels of flow restriction at the
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Fig. 1. The construction of articular cartilage. Chondrocyte cells are interspersed
throughout a solid matrix of collagen, which retains a dense suspension of giant
bottlebrush-like aggregates of aggrecan molecules, themselves each a bottlebrush.
The structure of the chondrocytes and collagen divides the non-calcified cartilage
above the bone into the three distinct zones shown.
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surface markedly temper long-term variability in the total carti-
lage thickness compared to a free-flowing boundary, but signifi-
cant strain variability persists in the superficial zone. To quantify
this, we solve the consolidation problem linearised about the
time-averaged strain field, which yields approximations for three
primary quantities: the depth d of the high-strain region, the
strain variation range Δ, and the propagation speed v of compres-
sion waves. We show that these quantities scale with the loading
frequency f as d� f �1=2, Δ� f �1=2 and v� f 1=2, and that Δ varies
inversely with the boundary flow resistance.

The approximations we derive encapsulate the salient points of
cartilage biomechanics. Our results quantify intuition as to why
the early stages of OA depend so much on behavioural factors: if
flow restriction is altered through surgery, or stresses are raised
through abnormal posture or gait, then mixed mode lubrication
time falls, strains and strain variability rise, and a potentially
unrecoverable cycle of damage begins.

2. Cartilage model

Healthy, non-calcified articular cartilage is not homogeneous. As
illustrated in Fig. 1, it is typically divided into three distinct regions
(Changoor et al., 2011; Hunziker et al., 2002; Jadin et al., 2005). The
outermost superficial zone, exposed to the synovial fluid within the
joint capsule, makes up the first 5–10% of the thickness. It is chara-
cterised by surface-parallel collagen fibres and pancake-shaped chon-
drocytes. The next 15–20% is the transitional or intermediate zone, with
isotropically oriented fibres and scattered spherical chondrocytes. The
remaining 70–80% comprises the radial or deep zone, wherein the
matrix is oriented perpendicular to the bone and egg-shaped chon-
drocytes are arranged in regimented columns. Wewill often refer back
to these zones, especially the exposed superficial zone.

Importantly, the aggrecan density is also inhomogeneous: the
density in the superficial zone is half of that in the deep zone
(Klein et al., 2007; Maroudas, 1976; Smith et al., 2013; Wedig et al.,
2005). This implies that the superficial zone will experience
greater strains and consolidate faster than if the distribution were
homogeneous, while the opposite holds in the deep zone (Carter
and Wong, 2003; Chen et al., 2001; Schinagl et al., 1996; Wilson
et al., 2007). With this in mind, we now construct our cartilage
biomechanics model.

2.1. Poroelastic equations

The geometry we will model is equivalent to a so-called
‘confined compression’ test. In such a test, a cylinder of cartilage
is placed in a frictionless, impermeable well, tightly bounding all
but its upper surface. A uniform, porous plate covers the exposed
surface, through which the desired load is applied. The subsequent
tissue compression is then measured over time. Due to the
confinement, no lateral strain develops and flow through the
tissue will only be vertical, with fluid exiting through the porous
plate. Therefore, this geometry guarantees a one-dimensional
deformation state, with purely vertical pressure gradient and
strain profile.

Of course, the true in vivo cartilage loading scenario is not one-
dimensional. However, it is a reasonable approximation in the
more realistic case we consider here, where a thin planar cartilage
‘slab’ is bounded below by an impermeable bone interface and
subjected to upper surface loading whose lateral extent is large
relative to the tissue thickness. As well as simplifying specification
and analysis of our model, this geometry allows us to extract the
primary tissue behaviours without resorting to extensive numer-
ical simulations.

We adopt a poroelastic (Biot, 1955; Verruijt, 1995) or ‘biphasic’
(Ateshian et al., 1997) model of cartilage, consisting of a particulate
solid phase (representing the aggrecan, collagen, and other such
constituents) saturated by fluid. Both solid and fluid phases are
assumed to be intrinsically incompressible, so deformation is the
result of fluid efflux and consequent elastic strain by mass
conservation. In addition, as the strain in loaded cartilage can
surpass 30% (Carter and Wong, 2003), a finite deformation model
is necessary; in one dimension, specifying such a model is
immensely simplified compared to higher dimensions.

The cartilage has unloaded thickness H, with comoving (mate-
rial) coordinate z running from z¼0 at the bone to z¼H at the
surface. We will couch our model in terms of the engineering
strain ϵ, where ϵo0 in compression, with associated axial
deformation gradient F ¼ 1þϵ. The true cartilage thickness at
time t is then

hðtÞ ¼
Z H

0
F dz¼Hþ

Z H

0
ϵ dz:

The corresponding work conjugate to the deformation gradient is the
first Piola–Kirchoff stress, but in one dimension its axial component
coincides with that of the Cauchy stress; therefore, for consistency
with the cartilage literature, we take the liberty of denoting axial
stresses by σ, with σo0 in compression.

The total vertical stress σtot decomposes as σtot ¼ �pðz; tÞþσðz; tÞ,
with fluid pressure pðz; tÞ and solid stress σðz; tÞ (Verruijt, 1995). The
solid stress σðz; tÞ in turn depends on the strain ϵðz; tÞ. At time t, the
tissue is subject to a prescribed compressive vertical surface stress
ΣðtÞr0 at z¼H. Provided inertial and body forces are negligible,
instantaneous equilibrium implies σtot satisfies ∂σtot=∂z¼ 0, so it
follows that σtot ¼ΣðtÞ for all z. Given the relationship between solid
stress σ and strain ϵ, as well as the time-dependent behaviour of the
fluid pressure p as a function of ϵ, this equilibrium governs the
behaviour of the tissue over time for a given loading profile ΣðtÞ.

We first define the solid stress σ. In compression, the collagen
matrix contributes little strength, with most resistance supplied by
the aggrecan (Han et al., 2011). Therefore, we neglect the con-
tribution of collagen to the stress. Now, suppose that the unloaded
cartilage possesses an aggrecan concentration distribution

c0ðzÞ ¼ A0þðA2�A0Þðz=HÞ2;
with c0ð0Þ ¼ A04A2 ¼ c0ðHÞ. This profile is typical of those observed
in experiments (Wedig et al., 2005). At non-zero strain, the one-
dimensional deformed volume element is 1þϵ, so the true aggrecan
density in a compressed unit volume reads

cðz; tÞ ¼ c0ðzÞ
1þϵðz; tÞ:

(In higher dimensions, this would read c0=detðFÞ, with F the def-
ormation gradient tensor.) The high charge density of the aggrecan
molecules induces a strong, non-ideal osmotic pressure Π which can
be fitted with a virial expansion (Bathe et al., 2005; Comper, 1991)

Πðz; tÞ ¼ RT½α1cðz; tÞþα2cðz; tÞ2þα3cðz; tÞ3�;
where R is the gas constant, T is the temperature, and the αi are the
virial expansion coefficients. It is this osmotic pressure which
gradually supports a greater proportion of the load as the tissue
strain develops towards steady state.

Absent loading, the osmotic pressure causes cartilage to swell.
Ordinarily this swelling is restrained by the collagen network. Our
neglect of the collagen here means we cannot simply write
σ ¼ �Π, but instead must augment the solid stress to mimic this
restraint. We match ϵ¼ 0 to the unloaded swollen state and define
an effective solid stress

σðz; tÞ ¼Π0ðzÞeΛϵðz;tÞ �Πðz; tÞ; ð1Þ
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where Π0 is Π at ϵ¼ 0 (i.e. with c¼ c0) and Λ is a large positive
constant to model unloading and buckling of the collagen network
under compression. This gives σ ¼ 0 at ϵ¼ 0, and σ � �Π for
moderate compression (ϵo0). In fact, Eq. (1) constitutes the stress
in a hyperelastic material with local strain energy density function

WðϵÞ ¼ RT ðα1c0þα2c20þα3c30Þ
eΛϵ

Λ

�
�α1c0log ð1þϵÞþα2c20

1þϵ
þ α3c30
2ð1þϵÞ2

#
:

Note that a three-dimensional formulation of the stress would
need to be in terms of appropriate work conjugates, such as the
first Piola–Kirchoff stress tensor if using the deformation gradient
as the strain measure as we do here. In addition, the planar tensile
effects of collagen may need to be considered if the loading is
sufficiently non-uniform, such as in an indentation test.

We now define the fluid pressure p. The interstitial flow obeys
Darcy's law for flow in a porous medium (Batchelor, 2000),
whereby the flux q is proportional to the gradient in pressure. In
our Lagrangian viewpoint, this becomes

qðz; tÞ ¼ � kðz; tÞ
1þϵðz; tÞ

∂pðz; tÞ
∂z

: ð2Þ

The function kðz; tÞ is known as the permeability. The factor
1=ð1þϵÞ serves to perform an inverse Piola transformation of the
Eulerian permeability k into the Lagrangian frame, resulting in an
effective Lagrangian permeability K ¼ k=ð1þϵÞ. This is derived in
the appendix.

Denser aggrecan is less permeable, so k, like Π, is a function of
the compressed aggrecan concentration c. The permeability fits a
power law

kðz; tÞ ¼ k0
cðz; tÞβk

;

where k0 and βk are positive constants (Comper and Lyons, 1993;
Smith et al., 2013). An exponential relationship is a common
alternative (Mow et al., 1984).

In reality, the permeability of the tissue to water is a function
not only of the aggrecan density, but also of the collagen matrix
geometry. As mentioned earlier, the collagen matrix varies in its
orientation and density through the tissue depth (Muir et al., 1970;
Nieminen et al., 2001), thus potentially adding a depth-dependent
component to the basic permeability k0. For clarity we neglect
such effects here, since collagen density variation affects perme-
ability rather less than aggrecan (Muir et al., 1970), but we note
that a change in the volume fraction of water and aggrecan can be
interpreted as a change in k0.

Putting together Darcy's law and conservation of mass leads to
the non-linear diffusion-type equation

∂ϵ
∂t

¼ ∂
∂z

k
1þϵ

∂p
∂z

� �
: ð3Þ

This is derived in the appendix, following Gibson et al. (1967,
1981) and McNabb (1960).

Combining Eq. (3) with the equilibrium stress–strain relation

Σ ¼ σtot ¼ �pþσ ¼ �pþΠ0eΛϵ�Π ð4Þ
yields a closed system. All that remains is to supply boundary
conditions and the loading protocol for ΣðtÞ.

2.2. Boundary conditions

We take the bone boundary z¼0 to be impermeable, so
qð0; tÞ ¼ 0, which implies pzð0; tÞ ¼ 0 through Eq. (2) (where pz
denotes ∂p=∂z).

The condition at z¼H demands more careful consideration. A
typical approach in consolidation problems is to suppose free flow
through the upper surface by setting pðH; tÞ ¼ 0 (Mow et al., 1984).

In reality, the joint geometry will provide resistance to fluid
exiting the cartilage surface. In the knee, for example, flow is
restricted by the meniscus, as it forces the fluid to flow around and
through its dense porous structure (Haemer et al., 2012). A simple
way to model this is to write the pressure as proportional to the
flux, essentially coupling the cartilage to another porous medium
whose far end is held at zero reference pressure (in the synovial
fluid). We write pðH; tÞ ¼ γqðH; tÞ, which implies the Robin-type
condition

pðH; tÞ ¼ σðH; tÞ�ΣðtÞ ¼ �γ
kðH; tÞ

1þϵðH; tÞpzðH; tÞ ð5Þ

by Eqs. (2) and (4). The proportionality constant γ40 dictates the
resistance, with higher γ giving lower flux.

2.3. Loading protocol

We will consider both static and oscillatory loading, and
reiterate that loads will always be compressive, so Σr0. Model-
ling static loading, where Σ is constant, serves two functions: to
understand the reaction of cartilage to loading in vulnerable
situations such as prolonged standing or kneeling, and to compare
an oscillatory load profile with its equivalent mean static stress.

For oscillatory loading, we will mimic typical activity patterns
using half-sinusoidal loading of frequency f and mean Σr0. The
instantaneous load is then

ΣðtÞ ¼
Σπ sin ð2πftÞ if ft�⌊ftcA ½0; 12 �;
0 if ft�⌊ftcA ½12 ;1�;

(
ð6Þ

where ⌊�c is the integer floor function, so x�⌊xc is the fractional
part of x. We will often compare oscillatory loading with the case
of static loading under the same mean stress, where ΣðtÞ �Σ .

2.4. Non-dimensionalisation and parameter selection

We now non-dimensionalise the system in order to understand
its parameter dependencies.

There are several natural scalings. First, let z¼Hẑ , so the
cartilage runs from ẑ ¼ 0 to ẑ ¼ 1. Now let c¼ A0ĉ and c0 ¼ A0ĉ0,
so ĉ ¼ ĉ0=ð1þϵÞ, yielding the rescaled aggrecan profile
ĉ0ðẑÞ ¼ 1�ð1�ϕÞẑ2 with ϕ¼ A2=A0. This then suggests setting
k¼ k0A

�βk
0 k̂ to obtain k̂ ¼ ĉ �βk .

Next, define the pressure scale S¼ RTα1A0. Let Π ¼ SΠ̂ , where
Π̂ ¼ ĉþa2ĉ

2þa3ĉ
3 with rescaled virial coefficients a2 ¼ A0α2=α1

and a3 ¼ A2
0α3=α1. This scaling for Π implies identical scalings for

the fluid pressure p¼ Sp̂, total stress σtot ¼ Sσ̂ tot and applied load
Σ ¼ SΣ̂ .

Combining these parameter groups yields a time scale

τ¼ Aβk �1
0 H2

RTα1k0
:

Setting t ¼ τt̂ recasts Eq. (3) into the dimensionless form

∂ϵ
∂t̂

¼ ∂
∂ẑ

k̂
1þϵ

∂p̂
∂ẑ

 !
:

The cyclic loading frequency also then rescales as f ¼ f̂ =τ.
Finally, the boundary condition in Eq. (5) rescales to

p̂ð1; t̂ Þ ¼ �Γ
k̂ð1; t̂ Þ

1þϵð1; t̂ Þp̂ẑ ð1; t̂ Þ; ð7Þ

with rescaled boundary resistance

Γ ¼ k0A
�βk
0
H

γ:
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The form of τ implies a quadratic dependence of consolidation
time on cartilage thickness H. This holds exactly for homogeneous,
unrestricted consolidation (Verruijt, 1995). Here, however, the
boundary resistance Γ goes inversely with H, and a lesser resistance
promotes faster efflux, so the true effect on consolidation time of
increasing H is likely sub-quadratic.

The original eleven parameters have been reduced to six: a2, a3, ϕ,
βk, Λ and Γ. Of these, we will fix the first five, as they correspond to
material properties of the cartilage itself, whereas Γ, our new
resistance parameter, is primarily related to the environment external
to the cartilage. The values of the fixed physical parameters used, and
the derived non-dimensional constants, are given in Table 1. We have
chosen parameters representative of typical healthy cartilage in order
to demonstrate and explore this model numerically, but the values
appropriate to different applications will vary with species, age, joint
quality and tissue location (Korhonen et al., 2002; Shepherd and
Seedhom, 1999). A realistic range of Γ is difficult to determine, since it
depends heavily on the tissue environment in vivo and therefore
cannot be determined by standard explant compression tests. In this
work, we will explore values between Γ ¼ 0 (free-flowing) and Γ ¼ 1,
later focussing on Γ ¼ 0:1 as a value that has a noticeable but not
unrealistically excessive effect.

The parameters in Table 1 imply a pressure scale S¼ 35 kPa, and
here we will consider average loads up to 15S� 500 kPa. For a typical
thickness H¼ 3 mm we also get a time scale τ¼ 4:1	 105 s, or
5 days; however, the majority of the consolidation process occurs in a
small fraction of this time. Typical consolidation durations examined
will be on the order of t̂ ¼ 0:01, which is equivalent to approximately
1 h with the above value of τ.

Having completed our rescaling, we now drop the hat notation
where applicable and work exclusively with the non-dimensional
variables unless otherwise specified.

3. Static loading

To illustrate the process of consolidation and to explore the
fundamental effect of the boundary resistance, we begin by
studying consolidation under a static stress.

The basic progression of consolidation is the following. At the
instant of first loading, the stress is borne entirely through hydrostatic
pressure of the pore fluid and the tissue is infinitely stiff. This creates a
pressure gradient at the semi-permeable surface, which induces fluid
efflux. As the pore fluid is exuded, the solid structure deforms,

progressively transferring more of the load from hydrostatic pressure
into elastic strain. Eventually an equilibrium is approached whereby
the entire load is sustained by the solid phase and the remaining pore
fluid is once again at background pressure (p¼0 here). This process is
exemplified in Fig. 2: deformation continues for a long time (2–3 h
under the time scale in Section 2.4) compared to how quickly the top
layers reach maximal strain due to progressive consolidation of
deeper sections as the fluid is gradually exuded. This effect is
enhanced by the inhomogeneity of the aggrecan concentration, which
effects a greater maximal deformation of the superficial zone and
lesser maximal deformation of the deep zone than is seen when
compared to a homogenised equivalent (Federico et al., 2009).

To understand the effect of boundary resistance, we first
examine a static stress of non-dimensional magnitude jΣ j ¼ 15.
(Recall that this is equivalent to a load of 500 kPa using the
parameters in Table 1, as discussed in Section 2.4.) Fig. 3A depicts
the evolution of true cartilage thickness hðtÞ ¼ 1þ R 10 ϵðz; tÞ dz for
different values of Γ, calculated by numerical integration of Eq. (3).
For a free-flowing boundary (that is, Γ ¼ 0) the classic displace-
ment–time curve seen in confined compression tests with a free-
flowing boundary is reproduced, with a basic consolidation time
around 1–2 h (Higginson et al., 1976; Mow et al., 1980). Increasing
the boundary resistance clearly acts to slow down consolidation to
some degree, but we would like to quantify this relationship.

Free-boundary homogeneous consolidation obeys an exponen-
tial decay at large t (Verruijt, 1995), so we expect similar behaviour
here. The effect of Γ can be seen in the global consolidation rate

χðtÞ ¼ � d
dt
log ðhðtÞ�h1Þ; ð8Þ

where h1 is the steady-state consolidated thickness as t-1. (Recall
that p-0 as t-1 under a static stress, so h1 can be calculated by
solving the steady-state stress balance Σ ¼ σ numerically for ϵ1
incrementally in z and then integrating.) The rate χðtÞ is the
instantaneous exponential decay constant, fitting hðtÞ�h1pe�χt

at a given t. Fig. 3B indicates that our system does approach an
exponential decay at large t: after a transient period of slower
consolidation, χ approaches a constant. The rate of approach is
slower for greater Γ and never faster than the free-boundary rate
with Γ ¼ 0. Indeed, we can use Eqs. (3) and (4) to show that

dh
dt

¼ pð1; tÞ
Γ

¼ σð1; tÞ�Σ
Γ

;

which clarifies the effect of Γ in retarding consolidation.

Table 1
Parameter values chosen. Derived non-dimensional
values are below the line.

Parameter Value

RT 2:5 kPa mL=μmol (T � 300 K)
α1 1:4	 10�1 μmol=mga

α2 4:4	 10�3 μmol mL=mg2a

α3 5:7	 10�5 μmol mL2=mg3a

k0 1:0	 10�3 mm2 ðmg=mLÞβk =kPa=sb
βk 1.6b

A0 100 mg=mLc

A2 60 mg=mLc

Λ 30

a2 3.1
a3 4.1
ϕ 0.6

a Bathe et al. (2005).
b Comper and Lyons (1993) and Smith et al.

(2013).
c Wedig et al. (2005).
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Fig. 2. Consolidation under a static load; jΣ j ¼ 15, Γ ¼ 0:05. Lines are true
material curves of initially equispaced points through the cartilage thickness,
i.e. ζðz; tÞ ¼ zþ R z0 ϵðz0 ; tÞ dz0 against non-dimensional time t for constant values
of z. Colour scheme indicates fraction of total eventual consolidation at each z
through the thickness, i.e. ϵðz; tÞ=limt-1ϵðz; tÞ, showing the slower rate of
consolidation near the bone than at the surface.
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The precise impact of Γ on this long-term rate can be inferred
by considering asymptotics of the system. For analytic tractability,
we will suppose that the aggrecan concentration is uniform
through the cartilage by replacing c0ðzÞ with its spatial average
c0 ; this renders the osmotic pressure Π and permeability k as
functions purely of ϵðzÞ, removing the direct dependence on z.
Now, suppose we are at large t nearing the steady state
p¼ 0; ϵ¼ ϵ1;σ ¼Σ, where homogeneity implies that ϵ1 is also
independent of z. Equilibrium �pþσ ¼Σ implies

∂p
∂z

¼ ∂σ
∂z

¼ ∂σ
∂ϵ

∂ϵ
∂z
:

Recalling the effective permeability K ¼ k=ð1þϵÞ, Eq. (3) then reads

∂ϵ
∂t

¼ ∂
∂z

K
∂σ
∂ϵ

∂ϵ
∂z

� �
: ð9Þ

We will now expand about the t-1 state. Let K1 ¼ K j ϵ ¼ ϵ1
and σϵ;1 ¼ ½∂σ=∂ϵ�ϵ ¼ ϵ1 . Assuming an exponential decay towards
the steady state at leading order, write

ϵ¼ ϵ1þηϵ1ðzÞe�λtþOðη2Þ;
K ¼ K1þOðηÞ;
∂σ
∂ϵ

¼ σϵ;1þOðηÞ;

where λ40 is the long-term consolidation rate and η51 is a
small bookkeeping parameter. Substituting these into Eq. (9) and
discarding terms of Oðη2Þ yields

�λϵ1 ¼ K1σϵ;1
d2ϵ1
dz2

: ð10Þ

All that remains is to linearise the boundary conditions. Expanding

σ about ϵ¼ ϵ1 implies

p¼ σ�Σ ¼ ησϵ;1ϵ1ðzÞe�λtþOðη2Þ: ð11Þ
Therefore, to first order in η, the bone boundary condition
pzð0; tÞ ¼ 0 implies that ½dϵ1=dz�z ¼ 0 ¼ 0, and the surface boundary
condition Eq. (7) implies that ϵ1ð1Þ ¼ �ΓK1½dϵ1=dz�z ¼ 1. We are
therefore presented with an elementary Sturm–Liouville problem
for the spectrum of decay rates λ.

Let ν2 ¼ λ=ðK1σϵ;1Þ. (Note σϵ;140.) With the boundary con-
ditions, Eq. (10) has solution ϵ1ðzÞp cosνz for ν satisfying

cot ν¼ΓK1ν: ð12Þ
Properties of the function cot ν guarantee that there always exists
exactly one solution in 0oνrπ=2 for all ΓZ0, which will be the
dominant term. Equality is achieved precisely when Γ ¼ 0, which
yields the free-flow consolidation rate λ¼ ðπ2=4ÞK1σϵ;1. Non-zero
Γ moves ν away from π=2 towards 0, so the consolidation rate
λpν2 falls. If Γ is still sufficiently small so that ν is close to π=2,
then we can expand cot ν� � ν� π=2

� �
to get the approxima-

tions

ν� π=2
1þΓK1

; λ� ðπ=2Þ2K1σϵ;1
ð1þΓK1Þ2

:

At the other extreme when Γb1 and therefore ν5π=2, we have
cot ν� 1=ν, giving the approximate solution

ν� ðΓK1Þ�1=2; λ� σϵ;1
Γ

:

For intermediate values of Γ, neither approximation applies. In
this case, Eq. (12) has no exact analytic solution, but it is easy to
solve numerically.

Fig. 3C displays the rescaling of the consolidation curves χðtÞ in
Fig. 3B by the solution λ of Eq. (12) at the corresponding value of
Γ; specifically, we plot λ�1χðtÞ against λt. Even though λ is based
upon a spatially averaged aggrecan distribution and is only a long-
time rate, the curves cluster remarkably well: the rate minima
have aligned, and all trend near to χ-λ. This analysis therefore
gives us good approximations for the long term behaviour of
consolidating cartilage as a function of Γ.

The analysis also supplies large-t approximations for the strain
ϵðz; tÞ and, via Eq. (11), the pressure pðz; tÞ, which both differ from
their equilibrium values (ϵ1 and 0, respectively) in proportion to
e�λt cosνz. Thus an increased boundary resistance Γ actually has
two effects: as well as increasing the time scale λ�1, it also increases
the spatial variation scale ν�1. In other words, the resistance both
slows down and smooths out the consolidation process.

4. Oscillatory loading

In the previous section, we investigated the effect of static loading
on our cartilage model. However, everyday stress patterns are not
static, but cyclic. Over time, if the pattern stays the same, the cartilage
will approach a periodic state with the compression fluctuating about
a long-term mean. Depending on the form and frequency of loading,
the long-term mean may differ significantly from that obtained by
applying the same average static load (Kääb et al., 1998). Characteris-
ing when and by how much these differences occur is important for
understanding the limits of long-term cartilage homeostasis.

In this section, we will study the effect of oscillatory loading on
our model. In particular, we will explore the effect of the boundary
resistance Γ on strain and pressure variation, both globally and
locally. We will see that even when the cartilage appears to be
static globally, a region of persistent local strain oscillations
remains in the superficial zone, whose magnitude and depth we
can approximate.
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Fig. 3. Consolidation under a static load of jΣ j ¼ 15, for Γ ¼ 0 (thick solid curve)
and a uniform range between Γ ¼ 0:2 and Γ ¼ 1 (dashed curves). (A) Thickness h(t)
as a function of non-dimensional time t. Increasing Γ slows consolidation. (B) The
consolidation rate χðtÞ. Higher Γ causes a later trough and slower long-term χ.
(C) The rescaling χðtÞ=λ against λt via the solution of Eq. (12). Despite the non-
uniform aggrecan concentration present in the simulations, the curves collapse
remarkably well.
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4.1. Consolidation

We first demonstrate the oscillatory consolidation process by
examining how the cartilage thickness h(t) varies with load profile.
Using a cyclic stress as in Eq. (6) and setting Γ ¼ 0:01, Fig. 4
illustrates the envelope of h(t) at varying frequency and mean
stress, where the frequencies shown are equivalent to doubling
from 1/64 Hz to 1/8 Hz under the time scale of Section 2.4.
Increasing the frequency damps the variation, suggesting that
many real-world load patterns might be effectively simplified to
some equivalent static load. We will return to this point later.

The value of Γ used above might seem rather small compared
with the range we considered in the static consolidation examples.
In fact, small values of Γ markedly temper the variation in h(t).
Setting jΣ j ¼ 15 and f¼13,000 (equivalent to 1/32 Hz), Fig. 5
compares the envelope of h(t) under oscillatory loading to that of
static loading of the same mean stress at six values of Γ. As Γ
increases to Γ ¼ 0:05, cyclic variation in h(t) is heavily suppressed
and the envelope approaches the static loading curve. Thus even at
this slow frequency, a small amount of boundary resistance lends
temporal stability to the cartilage. Beyond Γ ¼ 0:05, the behaviour
enters the regime of Fig. 3 where increasing resistance slows down
the whole consolidation process.

However, there are important details missed by considering only
the thickness h(t). Fig. 6 shows large-t envelopes of ϵðz; tÞ through the
cartilage depth z for two values of mean stress at low and high
frequency. There is a narrow but significant region near the surface
where non-trivial cyclic deformation occurs, thinner for higher
loading frequency; this effect has been seen in previous studies of
cyclic loading (Suh et al., 1995), but is less pronounced here because
of the moderating influence of the boundary resistance. Nevertheless,
this behaviour means that we cannot neglect the effects of oscilla-
tions altogether when considering the local mechanical environment.
As an aside, we note that the overlap of this region with the
superficial zone of surface-parallel collagen and pancake-shaped
chondrocytes seems unlikely to be coincidental (Wilson et al., 2006).

4.2. Superficial zone strain variation

We will now analytically quantify these superficial zone oscil-
lations. By making some judicious approximations in the case of

small oscillations, we can extract the parameter relationships
governing the penetration depth, strain variability and compres-
sion wave propagation speed of the oscillating region.

Suppose we subject the cartilage to oscillatory loading ΣðtÞ of
period τ¼ 1=f . Until specified otherwise, no particular form of ΣðtÞ
is assumed. For a periodic function F, define the cycle mean

〈FðtÞ〉¼ 1
τ

Z τ

0
FðtÞ dt:

For sufficiently large t, the strain ϵðz; tÞ is approximately periodic
and decomposes into ϵðz; tÞ ¼ ϵðzÞþδðz; tÞ, where ϵðzÞ ¼ 〈ϵðz; tÞ〉 and
δðz; tÞ has period τ with 〈δðz; tÞ〉¼ 0.
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Fig. 4. Envelope of variation of cartilage thickness h(t) under oscillatory stress, with
small boundary resistance Γ ¼ 0:01, against non-dimensional time t. Four different
non-dimensional frequencies f are shown, with the same three values of mean
stress Σ (indicated) evaluated at each frequency. As f increases, the envelopes
become progressively slimmer.
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Fig. 5. Cartilage thickness h(t) under oscillatory (f¼13,000; grey envelope of
variation) versus static (dashed black) consolidation at jΣ j ¼ 15, for various
indicated values of Γ, against non-dimensional time t. Greater Γ first brings
oscillatory consolidation closer to that of static and narrows its envelope of
variation, then slows down the long-term consolidation rate.
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Now, suppose that the strain fluctuations are sufficiently small
that we may use δ as an expansion parameter. This is the case for
high frequency or low magnitude activity, or high boundary resis-
tance. We view K and σ as functions of ϵ and z, rather than as
functions of z and t, writing Kðϵ; zÞ and σðϵ; zÞ. Linearising about ϵ,

Kðϵ; zÞ ¼ Kðϵ; zÞþδðz; tÞKϵðϵ; zÞ;
σðϵ; zÞ ¼ σðϵ; zÞþδðz; tÞσϵðϵ; zÞ:

Henceforth, subscripts Fϵ refer to partial derivatives with respect to
ϵ holding z constant, and Leibniz-style partial derivatives ∂=∂z (resp.
∂=∂t) will denote holding t (resp. z) constant but not holding ϵ
constant. In addition, where unspecified, the arguments of K ;σ and
derivatives are taken to be ðϵ; zÞ.

Similar linearisation of Eq. (4) implies

ΣðtÞ ¼ �pðz; tÞþσðϵ; zÞþδðz; tÞσϵðϵ; zÞ: ð13Þ

Linearising Eq. (3) and substituting for p from Eq. (13) gives

∂δ
∂t

¼ ∂
∂z

K
∂σ
∂z

þK
∂
∂z
ðδσϵÞþδKϵ

∂σ
∂z

� �
: ð14Þ

Since δ is periodic, we have 〈∂δ=∂t〉¼ 0, so taking the cycle mean of
Eq. (14) and using 〈δ〉¼ 0 gives

∂
∂z

K
∂σ
∂z

� �
¼ 0:

This shows K∂σ=∂z is constant. The no-flow condition at z¼0
implies the constant is zero, so ∂σ=∂z� 0; in other words, σðϵ; zÞ is
constant in z.

Eq. (14) now reads

∂δ
∂t

¼ ∂
∂z

K
∂
∂z
ðδσϵÞ

� �
: ð15Þ

At this stage we approximate K and σϵ by their (presently unknown)
values K1;σϵ;1 at z¼1 and neglect their z-derivatives, assuming that
their variation with z is sufficiently small compared to their value
over the superficial region of high δ-variation. Eq. (15) then reduces
to linear form

∂δ
∂t

¼ K1σϵ;1
∂2δ
∂z2

; ð16Þ

which is amenable to analytic solution. This diffusion equation
immediately indicates that the depth of the oscillating region scales
as ðK1σϵ;1Þ1=2.

We solve Eq. (16) by Fourier expansion in time. Decompose ΣðtÞ
and δðz; tÞ as

ΣðtÞ ¼Σþ
X1
n ¼ 1

Σ̂ neinωtþc:c:

 !
;

δðz; tÞ ¼
X1
n ¼ 1

δ̂nðzÞeinωtþc:c:;

where the angular frequency ω¼ 2πf ¼ 2π=τ and ‘c.c.’ denotes
complex conjugate. Note that the Fourier coefficients Σ̂ n and δ̂n

are, in general, complex. Taking the nth mode of Eq. (16) implies

inωδ̂n zð Þ ¼ K1σϵ;1
d2δ̂ zð Þ
dz2

:

This has solution δ̂nðzÞ ¼ Aneð1þ iÞψnzþBne�ð1þ iÞψnz , where we have
defined the spatial growth and decay rates

ψn ¼
nω

2K1σϵ;1

� �1=2

:

Observe the complex exponents giving a temporal phase shift
linear in z, indicating propagation of compression waves through
the cartilage as opposed to instantaneous deformation. The term
in Bn yields a mode with angular component eiðnωt�ψnzÞ which
propagates in the direction of increasing z; this corresponds to a
compression wave reflection off the bone at the base of the
cartilage, whose minor contribution we neglect by setting Bn¼0.

We now use Eq. (13) and the boundary condition at z¼ 1 to
extract the coefficients An and cycle-averaged strain ϵ. Linearising
Eq. (7) in δ implies

pð1; tÞ � �Γ½K1þδð1; tÞKϵ j z ¼ 1�
∂p
∂z

����
z ¼ 1

� �ΓK1σϵ;1
∂δ
∂z

����
z ¼ 1

;

where we have used Eq. (13) to substitute for p. Therefore, setting
z¼1 in Eq. (13) and recalling that σ is constant in z, we have

ΣðtÞ ¼ σþ δð1; tÞþΓK1
∂δ
∂z

����
z ¼ 1

� �
σϵ;1:

Taking the cycle mean yields Σ ¼ σ. This can be solved numerically
for ϵðzÞ, which then enables calculation of K1 and σϵ;1. Taking
higher modes, we have

Σ̂ n ¼ Aneð1þ iÞψn 1þΓK1ð1þ iÞψn

	 

σϵ;1;

which gives the coefficients An in terms of Σn.
This analysis finally gives us the strain oscillation

δðz; tÞ ¼ 1
σϵ;1

X1
n ¼ 1

Σ̂ neðz�1Þψn þ i½ðz�1Þψn þnωt�

1þΓK1ð1þ iÞψn
þc:c: ð17Þ

The magnitude of the surface deformations can be characterised
by the z¼1 strain variance

〈δð1; tÞ2〉¼ 1
σ2
ϵ;1

X1
n ¼ 1

jΣ̂ nj2
ðΓK1ψnþ1

2 Þ2þ1
4

: ð18Þ

When Γ ¼ 0, this is directly proportional to the variance of ΣðtÞ
and is independent of the oscillation frequency. A non-zero Γ has
two effects: it decreases the amplitude of oscillations, with higher
stress modes Σ̂ n subject to progressively stronger damping, and it
introduces frequency dependence, with all modes subject to
greater damping at higher frequencies (as seen in Fig. 6).

Until this point, our derivation has not assumed any particular
form of the stress ΣðtÞ. We now return to the ‘semi-sine’ stress
function in Eq. (6). The n¼1 mode of Eq. (6) is Σ̂ 1 ¼ � iπΣ=4.
Approximating Eq. (18) by its first term and substituting for Σ̂ 1 gives

a simplified expression for the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈δð1; tÞ2〉

q
�Δ,

where

Δ¼ π jΣ j
4σϵ;1

ΓK1ψ1þ1
2

� �2þ1
4

h i�1=2
: ð19Þ

If Γ ¼ 0, then Δ is independent of angular frequencyω. When Γ40,
the high frequency limit reads

Δ� π jΣ j
Γ

ð8σϵ;1K1ωÞ�1=2: ð20Þ

Fig. 7 shows Δ as a function of frequency for three mean
stresses compared with the true standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ϵð1; tÞ

p
from a sample of numerical integrations of the full system, where
Γ ¼ 0:1. This value of Γ barely affects the static consolidation rate
(see Fig. 3), but does have a consolidated thickness close to that of
the statically loaded equivalent (see Fig. 5) which lends accuracy to
the approximation in Eq. (19).

Each load cycle propagates as a compression wave through the
cartilage. The n¼1 mode in Eq. (17) has largest amplitude and
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therefore will dominate the propagation speed and the depth of
the oscillating region; hence there is a wavespeed v¼ω=ψ1 and a
depth scale d� 1=ψ1. As f (and so ω) increases, we see waves of
decreasing magnitude Δ�ω�1=2, with increasing propagation
speed v�ω1=2 and decreasing propagation depth d�ω�1=2 over
the propagation time τ�ω�1. These compression waves can be
visualised by plotting contours of constant ϵðz; tÞ, as shown in
Fig. 8 for three different frequencies. The increase in propagation
speed v manifests as shallower contour gradients, and the
decrease in propagation depth d and magnitude Δ is seen in the
shallower penetration of ‘looping’ contours.

The above analysis also yields the variation in fluid pressure.
Using Eq. (13) and approximating constants by their values at z¼1
as before, we find that

pðz; tÞ ¼
X1
n ¼ 1

Σ̂ neinωt eðz�1Þψn þ iðz�1Þψn

1þΓK1ð1þ iÞψn
�1

� �
þc:c:;

which gives the equivalent approximation to Eq. (19) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈pð1; tÞ2〉

q
� π jΣ jffiffiffi

2
p 1þ 1

ΓK1ψ1

� �2

þ1

" #�1=2

:

When Γ ¼ 0, this vanishes because a free-flowing boundary does
not sustain any pressure. However, when Γ40 this approaches
the constant π jΣ j=2 in the high-frequency limit.

4.3. Equivalent stress

The solution above has captured the variations in oscilla-
tion amplitude, but it does not account for the change with
frequency of the long-term average consolidated thickness
h ¼ limt0-1f

R t0 þ1=f
t0 hðtÞ dt, clearly visible in Fig. 4. At high

frequency (and hence low Δ) h is close to that seen under
the equivalent static stress, but lower frequencies deviate from
this and consolidate to a lesser degree. We can find a simple
estimate of this effect, at least within the superficial zone, by
employing an extra term in the stress expansion.

As before, suppose that σϵ, K and their ϵ-derivatives can be
approximated in the superficial zone by their values at z¼1. Writing
Eq. (13) to the next order in δ and taking the cycle mean implies

Σ � � 〈p〉þσ1þ1
2 〈δ

2
〉σϵϵ;1;

where we have used the second derivative σϵϵ;1 ¼ σϵϵ j z ¼ 1. Requiring
zero mean fluid flow at large t in tandem with the z¼1 boundary
condition implies that, under our approximations, 〈p〉¼ 0. If we then
use Eq. (19) to estimate 〈δ2〉�Δ2, we get

Σ ¼ σ1þ1
2Δ

2σϵϵ;1: ð21Þ
By substituting for the definitions of σϵϵ;1 and Δ, this could be
numerically solved for a more accurate ϵ than the first-order
approximation Σ ¼ σ1 we used before. The new strain will be
smaller than the first-order approximation owing to the term in
Δ2. Alternatively, we can use this to define an equivalent stress Σeq:
the static stress which would induce the same mean superficial
strain ϵ as that of oscillatory consolidation of a specified frequency
and mean stress Σ . Static consolidation obeys Σeq ¼ σ1 as t-1, so
Eq. (21) gives

Σeq ¼Σ�1
2Δ

2σϵϵ;1:

Note that σϵϵ;1o0, so jΣeq jo jΣ j , and as f-1 we have that Δ-0
by Eq. (20), so Σeq-Σ .

5. Discussion

Our results have important implications for the biomechanics of
osteoarthritis development. In the introduction, we discussed how
chronic abnormal loading through behaviour or joint mechanics is a
risk factor for OA. We will now explain how our results corroborate
these risk factors and explain the onset of mechanically induced OA.

A likely early stage in many forms of OA is when chondrocyte
apoptosis overtakes chondrocyte proliferation. Two types of mechan-
ical overload are known to cause apoptosis, namely excessive strain ϵ
and excessive rate-of-strain ∂ϵ=∂t (Kurz et al., 2005), though more
may exist. Assuming the transitory consolidation period has passed,
these can be expressed in terms of the deep and superficial zones'
mean strains ϵdeep and ϵsup, the superficial zone strain variation Δ
and the loading frequency f. The first overload, excessive compressive
strain, corresponds to jϵdeep j in the deep zone and jϵsup j þΔ in the
superficial zone. The second overload, excessive rate-of-strain ∂ϵ=∂t,
will only occur in the superficial zone, where it corresponds to the
product fΔ. (If it were to occur in the deep zone, it would be the
result of a traumatic instantaneous overload.) Considering how these
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change in different scenarios will indicate whether we expect to see
mechanically induced OA, and why.

Most striking are the consequences of a partial or total meniscect-
omy in the knee, known to be a high risk factor for OA (Papalia et al.,
2011). Removal of the meniscus has two key effects: it increases the
magnitude of the stress on the central cartilage region by decreasing
the contact area, and it decreases the resistance to fluid efflux at the
contact interface. In terms of our model parameters, jΣ j rises and Γ
falls. This causes considerable growth of the oscillation variance Δ in
Eq. (20), as well as the more obvious rise in the mean strain
magnitudes jϵdeep j and jϵsup j through the rise in jΣ j . Therefore,
all the key overload gauges—jϵdeep j , jϵsup j þΔ and fΔ—will rise,
causing increased apoptosis. A vicious cycle begins: a reduced cell
density implies slower synthesis of aggrecan, which compromises the
mechanical structure as the aggrecan content falls, leading to even
greater overload and more apoptosis. As this cycle repeats unchecked,
the tissue eventually degrades beyond useful function.

Even without as extreme a change as a meniscectomy, over-
loading can be induced merely by ligament injury or misalignment of
the knee. In this case, though the flow resistance remains the same,
the load distribution is altered and one side of the joint is subjected
to a higher stress than is normal. Therefore, as for the meniscectomy,
the stress magnitude jΣ j rises with potentially damaging results if
the ligament weakness or joint misalignment is not corrected.

There is further potential for damage beyond over-straining.
We saw that a decrease in the boundary resistance Γ will
decrease the long-term consolidation time; in other words, the
flux of fluid exiting the cartilage will start greater and decay
faster than it did originally. This means that the fluid available
for mixed mode lubrication between the joint faces will decrease
quicker, increasing the duration of cartilage-on-cartilage contact
and consequently degrading the superficial zone. The associated
fibrillation of the collagen matrix in the superficial zone is
another hallmark of early OA (Pritzker et al., 2006), potentially
causing with a further fall in Γ because of the change in surface
collagen geometry and density. Combining the consolidation
time (Section 3) with the equivalent static stress (Section 4.3)
provides a gauge of how quickly this high-friction regime will
develop for different patterns of activity.

In fact, the equivalent stress gives us another way to classify
activities by their potential for damage. It is possible that chondrocytes
do not respond immediately to high strain, provided it is not extreme,
but rather are only sensitive to the average strain over many cycles
(Chen et al., 2003). The equivalent stress provides a means to quickly
classify which patterns of daily activity are likely to be dangerous in
this way and which are not. In particular, by this measure, low-
frequency activities will be less destructive than high-frequency acti-
vities of the same average stress.

To model the maintenance or loss of cartilage integrity over the
course of years of activity, we must be able to efficiently describe the
consequences of any short- or long-term change in the biomechani-
cal parameters. The derivations we have presented here provide
exactly this. In the future, we hope to couple such a biomechanical
model with lifestyle and genetic data to enable effective intervention
through early prediction of osteoarthritis.
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Appendix A. Strain equation

To derive the dynamics of the material response to stress, we
follow Gibson et al. (1967, 1981) and McNabb (1960). Let ζ be the

Eulerian (‘laboratory frame’) position coordinate, with the bone
surface at ζ ¼ 0 and the cartilage extending up to ζ ¼ hðtÞ as the
stresses and deformations vary over time t. Now, let z be the
Lagrangian (‘cartilage frame’) coordinate, where the cartilage
always extends between z¼0 and z¼H. We can regard one of
these coordinate systems as a function of the other; thus, at some
time t, a slice of cartilage at z will be at a position ζðz; tÞ in the
laboratory frame. In particular, the total consolidated depth is
hðtÞ ¼ ζðH; tÞ, and the steady unloaded configuration is ζðz;0Þ ¼ z.

Let nðz; tÞ be the porosity field, i.e. the proportion of liquid to solid
phase. Consider a small material element between z and zþδz at t¼0.
The solid phase has mass ρ½1�nðz;0Þ�δz, where ρ is the solid phase
density. At some future time t, the element lies between ζðz; tÞ and
ζðzþδz; tÞ with new thickness δζ ¼ ζðzþδz; tÞ�ζðz; tÞ ¼ ð∂ζ=∂zÞδz,
and has solid phase mass ρ½1�nðz; tÞ�δζ by incompressibility. Con-
servation of solid mass therefore reads

1�nðz;0Þ ¼ ½1�nðz; tÞ�∂ζ
∂z
: ðA:1Þ

Let the velocities of the solid and fluid phases be vs and vf,
respectively. Fluid mass balance within a Lagrangian unit volume
plus fluid incompressibility implies

∂q
∂z

þ ∂
∂t

n
∂ζ
∂z

� �
¼ 0; ðA:2Þ

where we define the specific discharge q¼ nðvf �vsÞ.
The net flux q is taken to obey Darcy's law, wherein the

pressure gradient must be referred to the Eulerian frame, not the
Lagrangian. Thus q obeys

q¼ �k
∂p
∂ζ

;

which implies

q
∂ζ
∂z

¼ �k
∂p
∂z

after changing variable. Substituting this into the fluid mass
balance Eq. (A.2) gives

∂
∂z

�k
∂p
∂z

∂ζ
∂z

�
þ ∂
∂t

n
∂ζ
∂z

� �
¼ 0:

��
ðA:3Þ

At this stage we depart from Gibson et al. (1967, 1981) and
replace the porosity n with volume strain ϵ to obtain a more
‘traditional’ poroelasticity equation (McNabb, 1960; Verruijt, 1995).
Let

ϵ¼ δζ�δz
δz

¼ ∂ζ
∂z

�1¼ 1�nðz;0Þ
1�n

�1;

where the final equality is implied by solid mass balance Eq. (A.1).
Then the porosity n reads

n¼ 1�1�nðz;0Þ
1þϵ

¼ ϵþnðz;0Þ
1þϵ

:

Substituting this into Eq. (A.3) gives the final equation

∂ϵ
∂t

¼ ∂
∂z

k
1þϵ

∂p
∂z

� �

as quoted by McNabb (1960). Note that the initial porosity nðz;0Þ is
now rendered entirely implicit, and would only be required to
compute the fluid discharge velocity vf �vs as opposed to the flux
q. Note also that this is identical to what would be obtained
through an infinitesimal strain theory approach, except that the
permeability k has been adjusted to an effective permeability
K ¼ k=ð1þϵÞ accounting for the volume change.
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