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Abstract—Treatment options for osteoarthritis (OA) beyond
pain relief or total knee replacement are very limited. Because
of this, attention has shifted to identifying which factors
increase the risk of OA in vulnerable populations in order to
be able to give recommendations to delay disease onset or to
slow disease progression. The gold standard is then to use
principles of risk management, first to provide subject-
specific estimates of risk and then to find ways of reducing
that risk. Population studies of OA risk based on statistical
associations do not provide such individually tailored infor-
mation. Here we argue that mechanistic models of cartilage
tissue maintenance and damage coupled to statistical models
incorporating model uncertainty, united within the frame-
work of structural reliability analysis, provide an avenue for
bridging the disciplines of epidemiology, cell biology, genet-
ics and biomechanics. Such models promise subject-specific
OA risk assessment and personalized strategies for mitigating
or even avoiding OA. We illustrate the proposed approach
with a simple model of cartilage extracellular matrix synthe-
sis and loss regulated by daily physical activity.

Keywords—Biomechanical modeling, Subject-specific risk
prediction, Cartilage degeneration, Structural reliability
analysis, Extracellular matrix.

INTRODUCTION

Osteoarthritis (OA) is not easy to define, predict or
treat.’! Despite extensive research costing many bil-
lions of dollars, no drugs have been proven to modify
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the biological progression of OA, and only a few
treatments are proven to relieve symptoms beyond the
placebo effect.*®

Given this failure to find an effective post-diagnosis
treatment, perhaps attention should turn to preventing
or delaying the onset of cartilage degeneration.’!
Unfortunately this too is problematic. Except in the
particular cases of OA following traumatic injury such
as ACL or meniscal damage,”'>*>*® there are many
potential interacting causes of OA in an individual. So-
called ‘conservative management’ methods (such as
planned exercise programs) target subpopulations ei-
ther at risk of developing OA or rapidly progressing to
surgical interventions, such as total knee replace-
ments,*! but to be fully effective these methods rely on
accurate prediction of susceptible groups.

To date, OA prediction has largely been driven by
epidemiological studies that associate risk factors with
the likelihood of developing OA .%!%18:20:27.28.40.54.56.57.64
A few risk factors recur: for knee OA, these are age, high
BMI, low physical activity, high physical activity, muscle
weakness, previous injury/surgery (ACL injury and
reconstruction, meniscal damage and partial meniscus
removal), gender and depression.>*>!>47-6% Genetic pre-
disposition is also important,*® but this is currently dif-
ficult to measure clinically beyond risk associated with
family history and its effect on, for example, skeletal
anatomy.

Population studies are valuable for long-term
healthcare resource planning and for providing general
advice about the risk of developing OA. However, this
does not translate into patient-specific estimates of the
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relative or absolute risk of developing OA. By pro-
viding personalized risk estimates, people could be
motivated to change their modifiable risk factors or to
alter decisions when planning the future. This could
include making informed decisions about their housing
(e.g., avoid stairs and steep terrain), occupation (e.g.,
avoid heavy manual work), lifestyle (e.g., ensure ade-
quate nutrition) and recreational activities (e.g., avoid
certain sports). Patient-specific prediction may also
prove important when deciding about future surgery,
since implant revisions become more likely with
increasing time post-surgery, so the usual advice is to
delay joint replacement as long as possible. For these
reasons, accurate and timely patient-specific risk pre-
diction is a highly attractive goal.

In this paper, we present what we believe is the most
promising and rational approach to realizing this goal:
developing patient-specific computational models of
the physiological systems related to OA onset and
progression, combined with data on population sta-
tistical variability. Unlike purely statistical studies,
computational modeling allows us to systematically
integrate both environmental and genetic patient-
specific information into a single model. By integrating
diverse sources of information in their biological con-
text, a computational model can transform unex-
plained variability into explained variability, thereby
enabling accurate OA risk predictions.

Which kinds of models will be most effective in
turning unexplained variability into explained variabil-
ity? In the following, we first attempt to quantify the
fractions of disease incidence that are due to environ-
mental and genetic (including epigenetic) factors. This
helps us decide what kind of model might be most useful
in reducing uncertainty in patient-specific risk predic-
tion. In turn, this enables us to estimate what may be
achieved using computational models that focus on
environmental inputs to drive physiologically-based
models, rather than models that focus on genetic factors
as inputs (which are harder to quantify). We then illus-
trate our approach to patient-specific OA prediction
using a simple model that is based on known physiology
of cartilage tissue. In advocating this approach we also
describe an analogous approach from engineering de-
sign, called structural reliability analysis. We argue that
assessing risk and modes of failure is an appropriate
intellectual framework for understanding cartilage OA
risk both for an individual and across sub-populations.

POPULATION VARIABILITY:
ENVIRONMENTAL AND GENETIC FACTORS

Ageing is one of the strongest risk factors for OA.
For example, the incidence of radiographic OA in the
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Framingham study was 19% for those over 45 years
old, while in the NHANES (III) survey it was 37% for
those over 60.%% Predictions can be refined beyond age
alone by stratifying a population according to one or
more criteria and finding the relative risk between the
strata at a particular age. Using this approach, obesity
emerges as another strong risk factor: compared to a
baseline body mass index (BMI) of 22.5, the risk of
developing OA increases 1.6 times at a BMI of 25, 3.6
times at a BMI of 30, and 7.5 times at a BMI of 35.9%
Other risk factors identified include walking patterns,
muscle mass, activity levels, occupation (e.g., heavy
manual labor and particularly those occupations
involving carrying heavy loads, stair-climbing, squat-
ting and kneeling), history of joint injury, history of
previous joint surgery, family history of OA, genetic
factors (including anatomical variations of the
musculoskeletal — system), depression and gen-
der 9-17:20.24.27.29.30.43,55.61

Studies on twins reveal that environmental risk
factors account for between 40 and 60% of OA inci-
dence, with the remaining 60-40% of complementary
risk put down to genetic inheritance.’®>’®" There are
wide bounds on these estimates because there is a
strong interaction between environmental stressors
and an organism’s genetically ordained capability to
respond to these stressors, which can be difficult to
quantify by population studies. Only recently has epi-
genetics been shown to play a potentially important
role;®” this further confounds the clear separation of
genetic and environmental factors, as epigenetics are
not only influenced by ancestors but may also change
over a person’s lifetime. However, if environmental
risk factors are deemed modifiable, then perhaps as
much as 60% of OA may be modifiable or even
avoidable. This suggests that a model focusing on
environmental risk factors may be both feasible and
useful. Presumably an even greater percentage of the
population may be able to delay the onset of OA if
provided with appropriate advice. Even if one-third of
this upper bound estimate can be realized in practice, a
20% reduction in OA and a greater percentage with
delayed onset would represent a significant contribu-
tion to public health.

In general, excluding autoimmune or other diseases
resulting from system dysregulation, most disease
states are only realized when environmental conditions
stress an organism, or more precisely an organ or tis-
sue within that organism, beyond its repair capabili-
ties. If this capability is chronically exceeded, tissue
function deteriorates and the tissue inevitably pro-
gresses towards a diseased (i.e., pathological) state.
Well after unsustainable processes have commenced, it
is eventually recognizable clinically as a chronic disease
(in our case, OA). Closer examination reveals that
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many of the known risk factors for knee OA relate to
the mechanical environment experienced by the vari-
ous joint tissues. For example, since cartilage already
faces compressive stresses up to 10 MPa or even
20 MPa' which would quickly obliterate any other soft
tissue, it is unsurprising that additional mechanical
stressors have adverse consequences.”>® In fact, large
loads can both cause degradation®?***333 and stim-
ulate repair,'®'"?* implying that the mechanical envi-
ronment controls a delicate balance between damage
and repair.

Importantly, many of these mechanical risk factors
are clinically modifiable.”! For this reason we have
been motivated to develop biomechanical models of
cartilage based on tissue turnover of extracellular
matrix (ECM) components. The computational model
developed later in this paper explicitly incorporates
damage and repair processes for three key matrix
components, albeit at a high level omitting the specifics
of the processes involved. From the model output an
assessment can be made of the tissue’s sustainability
for a variety of environmental loadings, from which
predictions can be made about the likelihood of an
individual developing OA. In the next section we dis-
cuss cartilage ECM and its damage and repair, before
applying this in a first generation patient-specific risk
prediction model based on cartilage degeneration.

CARTILAGE EXTRACELLULAR MATRIX AND
MECHANICAL FAILURE

The ECM of cartilage includes dozens of collagens,
proteoglycans, and glycoproteins,®> all enmeshed
within intratissue water, called the interstitial fluid
(Fig. 1). Arguably the two most structurally important
macromolecules that regulate the tissue’s biomechani-
cal functional properties are type II collagen and the
proteoglycan aggrecan (as aggregate). The stiffness of
cartilage under compression comes from both the
repulsion between negatively charged aggrecans and
the difficulty that the fluid has in squeezing out of the
tissue.”>* The interstitial fluid leaving the tissue then
helps to give cartilage its famously low frictional
properties via so-called mixed-mode lubrication.** In
addition, collagen helps resist shear loads and the loss
of aggrecan itself, which otherwise would swell apart
and be rapidly lost from cartilage.*’

In the clinical literature there is some discussion as
to whether to define OA by clinical symptoms, like
pain and disability, or by structural changes inferred
through radiology or MRI.'®* We take a more
function-oriented approach and consider OA as an
inability of cartilage to maintain its functional
mechanical properties: the tissue has failed when

7

interstitial fluid

FIGURE 1. Aggrecan, produced by chondrocytes, carries a
strong negative charge. The resulting repulsion (electrical and
osmotic, represented by the small red arrows) gives cartilage
a tendency to swell.?2 The collagen network within the carti-
lage (anchored to the underlying bone) provides cartilage with
tensile strength and constrains the swelling and release of
aggrecan to the joint space.?? The collagen is therefore nor-
mally under tension (large red arrows). lllustration not to
scale.

fundamental mechanical variables, such as deforma-
tional resilience and interstitial fluid pressure, fall be-
low levels required to maintain tissue integrity. Note
that the root cause of this failure may be internal or
external to the cartilage tissue; indeed, OA is com-
monly regarded as a disease of the whole joint.*” Our
functional definition of OA is consistent with that
advocated by the Osteoarthritis Research Society
International (OARSI) for early identification of OA
risk and progression.*'

Although chondrocytes are known to adjust the
ECM in response to chemical and environmental sig-
nals,'®?? substantial and/or long-term changes in these
signals make the tissue more vulnerable to failure. This
can occur through various mechanisms (exemplified in
Fig. 2). Excessive tissue deformation, from either
abnormally large sustained loads or abnormally weak
tissue, can cause chondrocyte apoptosis.*® Insufficient
lubrication between contacting cartilage surfaces or
excessive activity will lead to excessive cartilage wear™
(as experienced by plumbers'® or cross-country
skiers,** for example). On the other hand, too low
activity or static loads are known to inhibit ECM re-
pair by retarding chondrocyte synthesis of aggrecan
and collagen.

If we are to understand the biomechanical factors
contributing to tissue failure, or OA, we need to start
by understanding how observable differences in joint
loads and geometry translate to changes in the
mechanical environment experienced by the cartilage
itself. More generally, since OA is rarely—if ever—the
result of mechanics alone, a so-called mechanistic
model of cartilage homeostasis is needed.
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FIGURE 2. lllustration of two potential mechanically initiated failure pathways to OA. Note other pathways (not shown), either
mechanical or non-mechanical, may also initiate OA. (a) Normal healthy cartilage may experience (b) long-term overuse or
repetitive small loads, which causes wear at the cartilage surface and exposes chondrocytes to high strains by the resulting
consolidation under cyclic loading. (c) Alternatively, healthy cartilage may experience a high impact (short-term) load leading to

splits, chondrocyte death, cytokine rel with prot

mediated ECM degradation, and damage to the subchondral bone. (d)

Ultimately, both routes result in failure as the cartilage repair capacity is exceeded.

MECHANISTIC MODELS VS. STATISTICAL
MODELS

A mechanistic model is one pertaining to the
underlying physical, chemical and biological mecha-
nisms, describing how these processes interact and
evolve in time. Far from being limited to mechanical
loading alone, such a model could also involve cell
signaling pathways, metabolic effects, ECM synthesis
and proteolysis, and so on. Unlike a purely statistical
approach, an appropriate mechanistic model allows
experimental data to be placed in its proper context.
For example, the interaction of the insulin-like growth
factor IGF-1 with the binding proteins and proteases
found in serum, synovial fluid and cartilage only makes
sense when it is placed in the context of diffusive
transport into the tissue and the ability of the tissue to
regulate its exposure.®>*® BMI furnishes a simpler
example: we know it is statistically connected to OA
risk, but whether or not this is due to mechanical
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reasons can only be ascertained in a subject-specific
model of cartilage mechanics incorporating knee
geometry and the equations of mass and momentum
balance. Furthermore, a mechanistic model enables ‘in
silico’ experiments to investigate disease processes or
reveal treatment strategies based on an individual’s
combination of ‘parameters’.

The above somewhat rosy view of mechanistic
modeling is undermined by imperfect knowledge of
model structure and parameter values. The art of
modeling is intuiting a model structure that can give
insight into the question being asked. For example, we
have argued above that focusing on turnover of the
ECM is an appropriate conceptual starting point for
questions related to OA prediction. Others might
choose a different model structure (e.g., focus on joint
forces). There is no single right way to model OA
mechanistically, and model structure will vary with the
modelers and the specific question being addressed.
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It is useful here to treat model uncertainty as
belonging to two main types. Imagine a model for a
generic person. Many of the model parameters and
even the core structure of the model, such as the phe-
nomena it includes, will be only known to within a
range; we call this population uncertainty. In contrast
to population uncertainty, we refer to individual

Metrics included in
population studies of
OA risk

Potential metrics of
cartilage mechanical
environment

Body mass and activity'

Net joint moment

Increasing
relevance to Net forces applied on
cartilage cartilage surfaces
mechanical Consolidation and

Proposed

environment lubrication of cartilage

Cartilage damage and
repair

v

FIGURE 3. Conceptualizing cartilage mechanical environ-
ment metrics that incorporate more known factors.

uncertainty as how a particular individual may vary
from this generic person. Whenever uncertainty arises,
stochastic approaches need to be coupled to mecha-
nistic models.

Nevertheless, it may be possible to remove some of
the unexplained population variability weakening the
association between, for example, current biomechan-
ical risk factors and OA outcomes. Indirect mechanical
measures of loading of the medial compartment of the
knee, such as knee adduction moments, provide a
much better prediction for OA progression than body
weight or frontal plane knee alignment, either alone or
in combination.*® Extrapolating, we would expect that
if even more relevant biomechanical factors were to be
evaluated, such as the duration of lubrication and tis-
sue consolidation, unexplained population variability
may be reduced and so our predictive ability would
increase. These subject-specific tissue mechanical con-
ditions are likely to be a stronger metric to associate
with OA risk than, say, BMI or knee adduction mo-
ments (Fig. 3). A multiscale subject-specific modeling
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Modelling subject-specific Subject-specific FEA Cartilage MRIs
T1W Fat Suppressed lower limb mesh knee model mesh
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l
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and modfied lubrication

FIGURE 4. Workflow for integrating imaging, gait and cartilage quality data into a multiscale subject-specific model of human

knee cartilage. For further discussion on each component, see host-mesh fitting,'®

cartilage stress-strain,”

EMG-informed muscle forces in gait,>® knee

8 and poroelastic models of cartilage.**°9®> We argue that tissue-level metrics of cartilage consolidation

and fluid exudation will have a stronger association with cartilage loss and defect enlargement than risk factors used in previous

studies.
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FIGURE 5. Structural reliability analysis: the risk of failure
increases as the distribution of expected loads increasingly
overlaps the distribution of the expected ultimate load of the
structure (resistance). The load measure need not be a pres-
sure or force, but rather some generalized measure of the
duress under which the structure has been placed.

approach, as depicted in Fig. 4, may be able to provide
these stronger metrics.

STRUCTURAL RELIABILITY ANALYSIS

Osteoarthritis can be viewed as a condition in which
the ECM components fail to deliver the required
mechanical function under the loads experienced. The
advantage of expressing the disease problem this way is
that we begin to see cartilage as a structure, which has
a risk of failure (due to cell death or excessive pro-
teoglycan loss, for example) when subjected to varying
and uncertain loads. This allows us to invoke well-
established concepts and methods from structural
reliability analysis*>' to predict OA risk.

Conceptually, structural reliability analysis is sim-
ple. When designing a structure, such as bridge, an
engineer chooses particular structural components in
order to resist an expected load, such as wind or
earthquake. This load is generally not a single value,
but rather a distribution of potential values. However,
as structures become more complex, variability in the
properties of structural components (variation in strut
thicknesses, for example) introduces uncertainty into
the ability of the structure to resist a given load. The
engineer’s task is then to compare the expected loads
and the structure’s likely resistance in order to estimate
the risk of failure. This is done by estimating a prob-
ability density function for the expected loads and
another for the structure’s ultimate load, called its
resistance. The overlap in these two densities, where
the load exceeds the structure’s ability to resist it, then
relates to the risk of failure (Fig. 5).

In cartilage we can estimate the distribution of
mechanical loads using the subject-specific multiscale
approach illustrated in Fig. 4, combined with measures
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of subject activity levels. The cartilage resistance to this
load depends on what would otherwise be regarded as
biological processes of ECM synthesis and loss
through the action of proteases, mechanical damage
and transport through the tissue surface. Non-me-
chanical challenges, such as inflammatory cytokines or
hormonal changes, enter via the ability of cartilage
ECM to be sufficiently maintained to provide a resis-
tance to the distribution of potential loads. Mecha-
nistic models for each of load and resistance would be
used along with the uncertainty in each model variable
to create the probability density functions found in
Fig. 5.

The terms ‘load’ and ‘resistance’ broaden to ‘gen-
eralized loads’ and ‘generalized resistances’ for the
potentially many dimensions upon which the
mechanical and chemical function of cartilage can be
assessed and the many resulting failure modes. In
Figs. 3 and 4 we suggested, for example, that the
consolidation and fluid exudation rate may lead to
increased cartilage damage, via increase in cell death,
collagen damage and surface wear. We can reframe
this loss of fluid exudation under sustained load as a
short-term loss of the cartilage to achieve the
mechanical function of adequately lubricating the
joint, with long-term consequences of excessive carti-
lage wear and eventual failure of the joint. Alterna-
tively, excessive tissue deformation can lead to an
increased rate of cell death, reducing tissue repair
capacity in the short term and causing the eventual
failure of the tissue to evenly distribute contact loads in
the long term. In general, the distributions depicted in
Fig. 5 are only snapshots in time that will, in fact,
evolve, and OA can be due to changes in the distri-
bution of either the load, or the resistance, or both: an
otherwise normal individual may develop OA simply
by shifting the load profile, or an individual with
activity within the normal range could develop OA
because they have a genetic profile such that their
ECM is less resistant to mechanical loading.

Although Fig. 5 is useful for depicting the basic
concepts, it falls down if there are multiple modes of
failure (each requiring its own axis in Fig. 5) or if, as
for cartilage, the resistance changes in time through
load-dependent damage and repair. In these cases, load
and resistance distributions are difficult, if not impos-
sible, to compute directly, and it is instead appropriate
to proceed by simulating a large number of realizations
of a stochastically loaded mechanistic model. Specifi-
cally, in each realization, model parameters are ran-
domly selected from an expected range and the
structure is allowed to evolve. For cartilage this pro-
cess can be considered either equivalent to computa-
tionally creating a study population of subjects based
on population variability (population uncertainty) or
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building up potential outcomes for an individual based
on a subject’s parameter uncertainty (individual
uncertainty). We will exemplify this approach in the
following section using a simple but informative
model.

EXAMPLE OF AN OA RISK PREDICTION
MODEL

To illustrate the core principles discussed above, we
now construct an elementary mechanistic model of
long-term cartilage health for the purposes of OA
onset prediction. Although such a model may be too
simplistic to produce accurate patient-specific predic-
tions as it stands, it serves as a concept for a modular,
updatable model, making explicit the key inputs
required from the many investigators involved in car-
tilage research, such as epidemiologists, cell biologists,
geneticists and biomechanical scientists.

MODEL CONSTRUCTION

The model tracks the densities of three main carti-
lage tissue components: chondrocytes, aggrecan and
collagen. These are represented by their spatial aver-
ages. Let n, denote the average number density of
chondrocyte cells in the cartilage at time 7 (measured in
days). Similarly, let a, denote the average mass density
of aggrecan (assumed mostly bound in aggregates),
and let ¢, denote the average mass density of collagen
(assumed mostly structural type II). These are updated
over time according to damage and repair rules that
depend on randomly generated physical activity.

First, we characterize the mechanical loading of the
tissue. Suppose that on day 7, the subject performs
activities amounting to loading the tissue with some
stress o, at an overall frequency f; when averaged over
the whole day. These are drawn from distributions
whose parameters depend on the subject’s daily habits.
For simplicity, we assume these distribution parame-
ters are constant in time.

If the activity continues for long enough, then the
tissue will consolidate to an equilibrium state. We can
form a representative metric of this state by calculating
the induced cartilage strain ¢, using a simplified one-
dimensional consolidation model. For simplicity we
assume the tissue is homogeneous, though a refined
model would likely require spatial variance of the
cartilage geometry and material parameters.”” Now,
suppose that the strain ¢, is borne entirely by the
aggregates. It is known that aggrecan of density a has
an osmotic pressure fitting the virial expansion®
M(a) = RT(aa + 020 + o3a’), with parameter values

TABLE 1. Osmotic pressure parameters.®

Parameter Value

R 8.3 x 10° mL kPa/mol/K
T 300 K

o1 1.4 x10~7 mol/mg

dp 4.4 x 10~° mol mL/mg?
3 5.7 x 107" mol mL?mg®

given in Table 1. However, under a compressive strain
¢>0, the true local aggrecan density is a/(1 —¢).
Therefore at a consolidated equilibrium, balancing the
osmotic pressure of compressed aggrecan against the
imposed stress ¢, yields the stress—strain relation

H( & ) = o,. This can then be solved for ¢,, the strain

1—¢

at equilibrium.

We now need a loading metric to stimulate the car-
tilage tissue damage and repair models. The equilib-
rium strain can be combined with the loading frequency

f: to form the daily activity level A, = ¢;f;, a simple

metric of how vigorous the day’s activity has been from
the viewpoint of the cartilage. This daily activity level
will then be an input into the model’s damage and re-
pair processes to calculate the stimulated production
and loss of the three cartilage components.

Next, we formulate the damage and repair equa-
tions for the chondrocytes n,, aggrecan «, and collagen
¢,. Chondrocytes can repair, to some extent, by pro-
liferation; this is noticeable in osteoarthritic condi-
tions, perhaps to replenish chondrocyte loss and
increase the ECM repair capacity, though in healthy
tissue chondrocyte turnover is low. Conversely, chon-
drocytes can be driven to apoptosis either by repetition
of high load events or by one single extremely high
load (traumatic) event, both of which result in a high
level of the activity 4,. To model these two competing
processes, we write

ey =N + P(n> (1 - %)nt - /l(n)D(n)(At)”lt

where p is a maximal proliferation rate per day up to
a healthy number density 7(®), and D™ (4,) is the
chondrocyte damage function rating how deleterious
the day’s activity 4, was on a scale from 0 to 1, with
A" the maximum fraction of chondrocytes potentially
removed per day. The damage function is taken to be a
shifted sigmoid function

1 +exp (—,u(”) A (0)) 1 +exp (—,u(”) A (0>)

D (4,)

T Trexp(— (4, — AD))  Texp(umA)

with sigmoid gradient u”) and threshold position 4©.
The latter encodes the onset threshold of tissue-af-
fecting activity levels, and will also appear in other
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components as a universal threshold; the former en-
codes the suddenness of damage onset, whose value is
chondrocyte-specific.

Aggrecan is synthesized by each chondrocyte at
some activity-dependent rate. However, it is also lost
through the tissue surface by degradation and pres-
sure-driven advection. This loss rate will increase as the
collagen content decreases, because collagen acts to
retain aggrecan. We write

Ct

A1 = dy + R(u) (A[)n[ — <;L(070) + l<a‘l) €Xp (1 — W) ) a;
4

where R (4,) is the activity-dependent synthesis rate
per cell, 240 is the baseline aggrecan loss rate when
¢, =, with ¢ the baseline healthy collagen con-
tent, and 2! is the maximal additional aggrecan loss
rate as collagen depletes. The activity-dependent syn-
thesis rate is given by

A A
() — @0 _ @h(1_ _
RY(4,)=p exp< A(0>> +p <1 exp( A<0>)>

where p(@?) and p@! are the minimal and maximal
synthesis rates per chondrocyte, respectively, and A
is as for the chondrocytes.

Collagen is also synthesized by each chondrocyte.
On the other hand, the collagen network has a natural
rate of loss by proteolytic degradation, and can also be
directly damaged through mechanical loading or
excessive friction and wear. These processes are en-
coded as

Cr1 = ¢+ RO(A)n, — (Wm + D ple) (A,))c,

where A% is the baseline loss rate and 2" is the
maximal daily damage rate. The synthesis rate, iden-

tical in form to the aggrecan, is

A A
(¢) — (c0) _ (CAN i _
R (At)*p CXp( A(O)) +p (1 CXp( A(O)>)

with new rate coefficients for collagen. The damage
function is identical in form to the damage for the
chondrocytes, reading

— e 4(0)
D<">(A) 1—|—e)(p< 1A )

1 +exp(—u(‘)A(0))

T T exp(—u (4~ AD)) T Hexp(uld A©)

again with a new coefficient u(?).

MODEL APPLICATION TO RISK PREDICTION

A statistical approach is to view some, or all, of the
inputs (and/or model parameters) as randomly vary-
ing, and the model outputs, on repeated simulation
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TABLE 2. Parameter values in OA model. See Ref. 39 for
component densities.

Parameter Value

pn 0.002/day

p@0 1.1 x 1078 mg/day
p(a,1) %p(a‘O)

pe0) 1.1 x 1078 mg/day
p(c.1) %p(c.o)

n© 10%/mL

2" 0.01/day

(@0 0.01/day

@ 0.005/day

c© 170 mg/mL

€0 0.006/day

e 0.01/day

A© 30% x 0.3 Hz

ulm 50 s

u© 100 s

runs, as realizations of an underlying probability dis-
tribution for the trajectory of the tissue health over
time. This provides a more realistic and more person-
alizable approach to OA prediction on longer time
scales, as both uncertainty in parameter estimation and
variability in different patients’ lifestyles can be incor-
porated readily. From this approach, onset predictions
can be estimated once the model is tuned to a partic-
ular patient, and, importantly, mitigation strategies
can be explored by altering these parameters.

The parameters we will use for this example are
given in Table 2. While some variables are at least
approximately known, such as cell and collagen den-
sities, others, such as loss rates in response to activity,
lack solid quantitative data. We have chosen variables
that give plausible results for susceptible patients in
order to illustrate the model, on the understanding that
future work is necessary to verify and calibrate models
like this. Exploring population uncertainty would then
correspond to varying these parameters for each sim-
ulation run. In this instance, we will hold these
parameters constant and instead explore individual
uncertainty through randomly varying daily activity.
For the distributions of the activity variables o, and f,,
we choose normal distributions of respective means &, f
and respective variances (% 6)2, 4 f)z. Choosing dif-
ferent values of  and f'then allows us to simulate low-,
medium- and high-activity lifestyles.

We use the model to simulate an abrupt change in
activity. In this scenario, a person switches lifestyle
from ‘normal impact’ daily loading to either ‘high
impact’ or ‘low impact’ loading distributions, charac-
terized by adjusting the distribution parameters &, f.
The normal impact loading is at a level permitting
healthy tissue homeostasis, whereas the others are
potentially injurious regimes: high impact represents



Predicting Knee Osteoarthritis

High activity

Tissue health

-0.01r
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FIGURE 6. Cartilage health (as defined in the text) during an abrupt shift from medium to high activity (left) or from medium to low
activity (right). Grey lines are individual activity realizations; solid black lines are the means over all realizations, with 95%
confidence intervals in dashed black lines. Red dash-dotted line indicates the zero health OA danger threshold.

260 280 300 320 340 360 380 400 420 440
Weeks to onset

FIGURE 7. Distribution of OA danger threshold hitting times
in the high activity example of Fig. 6.

overload damage (e.g., through obesity or abnormal
activities), and low impact represents under-synthesis
(e.g., through too sedentary a lifestyle).

To characterize the overall health of the cartilage at
every point in time, we define the tissue health as the
difference of consolidated strain from 35% under a
400 kPa test load, with 35% chosen as a typical tol-
erable maximal tissue strain. A strain greater than 35%
under the test load then translates into a negative
health metric and therefore indicates potential OA
onset. One could also construct a health surrogate
based on regenerative capacity, say, to highlight
longer-term regimes of OA danger.

Figure 6 shows the effects of switching from med-
ium activity to high activity or low activity. After a
stable period at & =350kPa and f=0.1 Hz, the
activity distribution is abruptly switched to either
6=450kPa and f=0.12Hz (high activity) or
& =200 kPa and f=0.02 Hz (low activity). In high
activity case, an initial rise in tissue health from
increased activity-driven synthesis is soon outweighed
by the long-term effects of damage leading to a slow
but persistent decline in tissue health. In the low
activity case, the decrease in activity-driven synthesis is
sufficient to quickly drop the tissue below the indicated
danger threshold; though it does not keep decreasing
like in the high activity case, the tissue is now more
susceptible to sudden impact loading and may be at
increased risk of age-related OA. These two circum-
stances correspond to respectively shifting either the
load or resistance curves in Fig. 5, as discussed earlier.

The high activity switch exhibits a range of different
potential OA onset thresholds depending on the par-
ticular realizations of the daily activity distribution.
This information can be best presented to a patient
through statistics of the distribution of OA onset hit-
ting times; that is, the first time at which a particular
trajectory crosses the zero health axis. For our example
data, this distribution is given in Fig. 7, which predicts
an OA onset time of 345 £+ 47 weeks.

CONCLUSIONS

We have argued that combining mechanistic com-
putational models with statistical approaches under
the umbrella of structural reliability analysis provides a
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promising framework for overcoming the current
challenges in providing subject specific recommenda-
tions for avoiding OA onset and conservatively
managing OA progression. Although multiscale sub-
ject-specific models are likely needed to encompass
more of the salient characteristics that OA patients
may present with, the example model presented here
does develop tissue changes that may well represent the
OA cartilage degradation process. We believe that by
using such models, stronger OA patient-specific risks
will be found if direct metrics for the tissue mechanical
environmental stressors, such as consolidation and
fluid exudation, rather than indirect measures like BMI
and physical activity, are used.

While reliable patient-specific predictions are not yet
possible, how quickly they will emerge depends mainly
on the speed with which high quality patient-specific
data becomes available at an affordable price. At pre-
sent, getting sufficient information to feed into a mech-
anistic model is a challenge. However, technology is
evolving rapidly. With the ongoing developments in
high-throughput genomic and proteomic technologies
and imaging technologies (including computer vision of
gait), alongside musculoskeletal data obtained from gait
laboratories and activity monitors in mobile phones,
data to drive patient-specific models may become
available sooner than one may think. Indeed, high
quality complete genome sequencing can now be
accomplished for less than one thousand dollars, pro-
teomic analysis is developing rapidly, and it is now
possible to analyze the blood and synovial fluid to better
understand inflammatory drivers of OA.*> Further-
more, MRI imaging can now quantitate damage to the
collagen network following joint trauma and track col-
lagen network recovery over a number of years.'?

Model development and validation will likely be
both iterative and opportunistic. It will be iterative in
the sense of a Bayesian approach: a new data set is first
used for validation, then folded into the model cali-
bration by updating model parameters, so the model is
always improving with each data cycle. On the other
hand, development will be opportunistic in the sense
that when a new technology arises, such as phone
applications that faithfully record a person’s activity
levels, then improvements in this aspect of the model
may be driven ahead of others. New data is arriving all
the time from population and lab based studies, as well
as community wide projects such as the Knee
Osteoarthritis Initiative. We can dream of a time when,
in contrast to these relatively uncoordinated data col-
lections, the OA community starts collecting data
specifically to inform a model. This is beginning to
occur in the study of other diseases.**>*

Finally, itis important to remember that when people
refer to patient-specific models or risk predictions, it is
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not expected that everything is known about the indi-
vidual. A compromise must always be made as to what
data can be obtained, and at what financial cost and
patient inconvenience. The question should then be:
what data is most informative about the risk of OA
amongst that which can be reasonably measured? In
such an approach all other unknown variables would be
assumed to be either at the population average, or better
sampled randomly from an assumed population distri-
bution. Naturally, the clinical utility of this approach
rests on whether or not the obtainable data yields a risk
assessment more accurate than that already known for
population risk as a whole. This is yet to be seen.
However, there is utility beyond immediate clinical
application. As with bridge designers, simply putting the
risk assessment into this mechanistic-statistical frame-
work of structural reliability analysis helps to define the
problem, allowing us to identify new and efficient
strategies to minimize the risk of failure.
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