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In this document, we cover details of statements and derivations
in the main text. We first elaborate on the need for a local po-
tential of order higher than quartic, before discussing details of
our model: analogies to spin field theories and pure diffusive
models, decoupling of loops, and the more active dynamics of a
graph of odd degree versus one of even degree. We next show
that edges that are equivalent under automorphism obey iden-
tical waiting time distributions, we compute the energy barriers
for the 3-cycle/4-cycle transitions in K4, and we detail the deri-
vation of the cycle basis representation for P4,1 in the incom-
pressible limit. Finally, we consider the use of e-girth distributions
to predict the behavior of active flows on complex networks.
We also provide details on numerical methods used throughout
this work.
In addition to figures referenced in the following text, we also

provide two further figures: Fig. S4, which supplements Fig. 3 by
illustrating all 20 asymmetric cubic graphs considered; and Fig. S5,
which shows an example integration of totally incompressible flow
on a 15× 15 hexagonal lattice to supplement the discussion of face
cycle basis representations.

SI Local Potential
The typical symmetric, bistable potential is the quartic V4ðϕÞ=
−ð1=2Þϕ2 + ð1=4Þϕ4. However, we use the sixth-order form V6ðϕÞ=
−ð1=4Þϕ4 + ð1=6Þϕ6. This is to force the energy to have discrete
local minima once the soft incompressibility constraint is added; we
will explain this further here.
Consider the elementary (although not simple!) two-vertex,

three-edge graph in Fig. S1A. This has energy

Hðϕ1,ϕ2,ϕ3Þ= λ½V ðϕ1Þ+V ðϕ2Þ+V ðϕ3Þ�+ μðϕ1 +ϕ2 +ϕ3Þ2.

In the limit μ=λ � 1, the flow is incompressible, so we can substitute
ϕ3 =−ϕ1 −ϕ2 to obtain a reduced energy Ĥðϕ1,ϕ2Þ= λHðϕ1,ϕ2Þ,
where, assuming a symmetric potential V ðϕÞ,

Hðϕ1,ϕ2Þ=V ðϕ1Þ+V ðϕ2Þ+V ðϕ1 +ϕ2Þ.

Local minima of H then yield metastable states of the system,
independent of λ.
Consider the case V =V4. Then H factorizes as

H=
1
2
f ðϕ1,ϕ2Þ½f ðϕ1,ϕ2Þ− 2�,

where f ðϕ1,ϕ2Þ=ϕ2
1 +ϕ1ϕ2 +ϕ2

2. Thus, ∇H= 0 implies ðf − 1Þ∇f =
0, so either f = 1 or ϕ1 =ϕ2 = 0. The latter is a local maximum, so
our minima are the solutions of ϕ2

1 +ϕ1ϕ2 +ϕ2
2 = 1. However,

this is an ellipse in the ðϕ1,ϕ2Þ plane, implying a continuous Uð1Þ-
symmetric set of fixed points. In other words, with V =V4, mixed
states such as ð1= ffiffiffi

3
p

, 1=
ffiffiffi
3

p
,−2=

ffiffiffi
3

p Þ are equally preferable to unit
flux states like ð1,0,−1Þ. In contrast, the choice V =V6 results
in minima of H only at the six states ðϕ1,ϕ2Þ= ð±1,0Þ, ð0, ± 1Þ,
ð±1,∓1Þ, which is the phenomenology we are interested in.

SI Model
Relationship to Lattice Spin Field Theory.Our energy in Eq. 1 can be
seen as a generalization of a lattice spin field theory. Suppose we
switch to a typical vertex-based picture, where fluxes ϕe on edges
e in Γ are now spins ψ i on vertices i in an interaction graph Ξ. A
scalar lattice spin theory then has Hamiltonian

Hspin = λ
X
i

V ðψ iÞ+
1
2
μ
X
fi, jg

�
ψ i ±ijψ j

�2, [S1]

where, in the sum over adjacent spins fi, jg inΞ, the sign±ij is+ or−
according to whether the interaction between i and j is antiferro-
magnetic or ferromagnetic, respectively. In our theory, however,
multiple spins are permitted inside each interaction term according
to the degree of each vertex in Γ. For instance, on a cubic graph,
Eq. 1 is equivalent to

H = λ
X
i

V ðψ iÞ+
1
2
μ
X
fi, j, kg

�
ψ i ±ijψ j ±jkψk

�2,

where the interaction is now a sum over interacting triples of spins,
one term for each vertex in Γ, with pairwise signs being − or +
according to whether the corresponding edges in Γ̂ are oriented
head-to-tail or not at the vertex. Thus, we have essentially defined
a theory on an interaction hypergraph Ξ, with Eq. S1 being the
special case where Ξ is a graph: although Eq. S1 has two types of
interaction edge—antiferromagnetic and ferromagnetic—between
two spins, the general theory has 2n−1 types of interaction hyper-
edge between n spins for all n≥ 1.

Diffusive Dynamics When λ= 0. In the absence of a local edge po-
tential (i.e., λ= 0), Eq. 2 reduces to noisy scalar diffusion on the
edges of Γ. This process results in a long-term state dominated by
a weighted sum of cycles of the graph, as we now describe.
As in the derivation of the incompressible limit (see SI In-

compressible Limit and Incompressible Limit), by analogy with a
spectral decomposition for the diffusion equation, we decompose
Φ into a sum Φ= fjΨj over an orthonormal eigenbasis Ψj of
the edge Laplacian DTD, where Ψj = ðψ j

eÞ has eigenvalue νj ≥ 0.
The components fi then obey

dfi =−μνifidt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWi,t,

after setting λ= 0 and combining independent noise terms. Thus,
modes with νi > 0 are damped by the diffusivity μ whereas modes
with νi = 0 are only subject to noise-induced fluctuations. The non-
zero modes’ amplitudes follow Ornstein–Uhlenbeck processes and
therefore have mean zero and variance ðβμÞ−1 as t→∞, whereas,
because of the absence of damping, the zero modes’ amplitudes
follow simple Brownian processes and so have variance 2β−1t.

Decoupling of Loops. We show here that if Γ contains loops, then
these will decouple from the dynamics of the rest of Γ. Consider a
loop edge ℓ∈ E incident to a vertex w∈V. Then D is defined such
that Dwℓ = 0 (consistent with ϕℓ contributing zero to the net flux at
w, because flow in along ℓ always equals flow out along ℓ). There-
fore, using summation convention, Dveϕe is independent of ϕℓ for
all v∈V, which implies ∂H=∂ϕe is independent of ϕℓ for all e≠ ℓ,
and thus ϕℓ decouples. Furthermore, ðDTDΦÞℓ =DvℓDveϕe = 0, so
dϕℓ =−λV ′ðϕℓÞdt+

ffiffiffiffiffiffiffiffiffiffi
2β−1

p
dWℓ,t, meaning ϕℓ behaves as a non-

interacting Brownian particle in the potential V ðϕℓÞ.
Odd- Versus Even-Degree Vertices. Graphs with odd-degree vertices
exhibit more active stochastic cycle selection dynamics than those
with even-degree vertices. This is exemplified by the small
graphs in Fig. S1, where adding an extra edge markedly slows
transition rates. For the graph in Fig. S1A to change state while
conserving flux, one edge changes from +1 (or −1) to 0
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while another simultaneously goes from 0 to −1 (or +1), which
has an energy barrier 11λ=192. However, for the graph in
Fig. S1B, one edge changes from +1 to −1 while another goes
from −1 to +1, with an energy barrier λ=6 nearly 3 times that of
Fig. S1A.

SI Automorphic Equivalence
In this section, we show that edges within an automorphism
equivalence class obey identical waiting time distributions. As
in the main text, we assume that Γ does not contain any loops
but do allow multiple edges between distinct vertices. In ad-
dition, for clarity, we do not use summation convention.
To permitmultiple edges, we define an automorphism σ ∈AutðΓÞ

as a permutation of V ∪ E preserving V and E such that v∈V and
e∈ E are incident if and only if σðvÞ and σðeÞ are incident. Suppose
we have flow Φ on Γ̂ obeying Eq. 2, whose components read

dϕe =−λV ′ðϕeÞdt− μ
X
v∈V

X
f∈E

DveDvfϕf dt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWe,t. [S2]

Let Φσ = ðϕσ
e Þ be the flow vector after permuting by σ, so that

ϕσ
e =ϕσðeÞ. Replacing e with σðeÞ in Eq. S2 and substituting this

definition implies

dϕσ
e =−λV ′

�
ϕσ
e

�
dt− μ

X
v∈V

X
f∈E

DvσðeÞDvfϕf dt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWσðeÞ,t.

[S3]

Because σ is a permutation, we can reorder the sums as
X
v∈V

X
f∈E

DvσðeÞDvfϕf =
X
v∈V

X
f∈E

DσðvÞσðeÞDσðvÞσðf Þϕσðf Þ.

Furthermore, because σ preserves incidence but not necessarily
orientation, DσðvÞσðeÞ = seDve, where se =±1 according to whether
the orientation of σðeÞ with respect to σðvÞ is the same as or
opposite to the orientation of e with respect to v. Therefore,
Eq. S3 becomes

dϕσ
e =−λV ′

�
ϕσ
e

�
dt− μse

X
v∈V

X
f∈E

DveDvf sfϕσ
f dt+

ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWσðeÞ,t.

[S4]

Let ~Φσ
= ð~ϕσ

eÞ be the flow with components ~ϕσ
e = seϕσ

e. Multiplying
Eq. S4 by se and using seV ′ðϕÞ=V ′ðseϕÞ gives

d~ϕ
σ
e =−λV ′

�
~ϕ
σ
e

�
dt− μ

X
v∈V

X
f∈E

DveDvf ~ϕ
σ
f dt+

ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWσðeÞ,t,

where we have also used dWt =−dWt by symmetry of the process
W. In other words, ~Φσ

and Φ obey identical stochastic differential
equations, meaning that seϕσ

e and ϕe obey identical waiting time
distributions. However, ϕσ

e and −ϕσ
e also obey identical waiting time

distributions, because, for every state Φ0, there is an identical prob-
ability state −Φ0 by symmetry of H. Therefore, any edges e1 and e2
for which there exists σ ∈AutðΓÞ with e2 = σðe1Þ will have identical
waiting time distributions.
Note that, in the incompressible limit μ→∞, there may also be

pairs of edges with identical waiting time distributions for which
no such σ exists, even in connected simple graphs.

SI Energy Barriers
We describe here the process of computing the transition energy
barriers for K4 in the limit μ=λ � 1. We assume incompressibility
throughout the transition, and enforce this by directly solving the

constraints, although a cycle basis would yield the same result.
Using the vertex labelings and edge orientations in Fig. 1A, let ϕ1,
ϕ2, and ϕ3 be the flows on the outer edges 2→ 3, 2→ 4, and 3→ 4,
respectively. Then the flows on the other three edges are fixed by
the four vertex constraints (one of which is redundant), giving
energy Hðϕ1,ϕ2,ϕ3Þ= λHðϕ1,ϕ2,ϕ3Þ, where

Hðϕ1,ϕ2,ϕ3Þ=V ðϕ1Þ+V ðϕ2Þ+V ðϕ3Þ+V ðϕ1 +ϕ2Þ+V ðϕ2 +ϕ3Þ
+V ðϕ3 −ϕ1Þ.

Extrema of H can then be evaluated numerically. By symmetry, we
need only consider one particular transition. Let Φa be the state
with unix flux on the 3-cycle 1→ 2→ 3→ 1 where ðϕ1,ϕ2,ϕ3Þ=
ð1,0,0Þ. Similarly, let Φc be the 4-cycle 1→ 2→ 3→ 4→ 1 where
ðϕ1,ϕ2,ϕ3Þ= ð1,0,1Þ. These are separated by a saddle point Φb
with ðϕ1,ϕ2,ϕ3Þ≈ ð1.03, 0,0.44Þ, where HðΦbÞ≈−0.20. Because
HðΦaÞ=−1=4 and HðΦcÞ=−1=3, this gives transition energy bar-
riers ΔHab ≈ 0.45λ from a 3- to a 4-cycle and ΔHcb ≈ 0.54λ from a
4- to a 3-cycle.
Note that the transition is not exactly of the form ðϕ1,ϕ2,ϕ3Þ=

ð1,0, sÞ with 0≤s≤ 1, as it would be were it only adding or removing
a unit of flux around a 3-cycle. Instead, the saddle point is slightly
displaced from ϕ1 = 1. However, this effect is small, and ϕ2 remains
at ϕ2 = 0 throughout.

SI Incompressible Limit
Dimensional Reduction. Let L=DTD be the (jEj× jEj, symmetric,
positive semidefinite) Laplacian matrix on edges, and let
fΨ1,Ψ2, . . . ,ΨjEjg be an orthonormal basis of eigenvectors of L
with components Ψi = ðψ i

eÞ and corresponding real, nonnegative
eigenvalues fν1, ν2, . . . , νjEjg. Now, using summation convention,
let fi =ϕeψ

i
e be the components of Φ in this basis. Then, by or-

thonormality of the basis vectors, ϕe = fjψ j
e, so fi obeys

dfi =−λV ′
�
fjψ j

e

�
ψ i
edt− μνifidt+

ffiffiffiffiffiffiffiffiffiffi
2β−1

q
ψ i
edWe,t,

with no sum over i. As μ→∞, the second term damps to zero all
fi with nonzero eigenvalues νi > 0, leaving only components with
νi = 0. The corresponding eigenvectors span ker D, the space of
all incompressible flows termed the cycle space or flow space.
Furthermore, orthonormality implies the noise term ψ i

edWe,t re-
duces to a single term of unit variance. Therefore, in this limit,
the system obeys

dfα =−
∂Ĥ
∂fα

dt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWα,t,

where Greek indices run over only those components where να = 0,
and we use the reduced energy

Ĥ = λ
X
e∈E

V
�
fαψα

e

�
.

Having reduced the dynamics onto ker D, we are now free to change
basis inside this subspace. In general, the orthonormal basis fΨαg
will not be physically intuitive, because its basis vectors include frac-
tional flows on many edges. More comprehensible is a cycle basis,
where basis vectors comprise unit flux flows around closed cy-
cles. Such a basis of ker D always exists, although this intuitive-
ness comes at the cost of nonorthogonality. Nevertheless, a
cycle basis is particularly effective for planar graphs, as we de-
scribe in Incompressible Limit.

Cycle Basis for P4,1. We detail here the derivation of the planar cycle
basis representation in the incompressible limit for the cube P4,1.
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Using the embedding shown in Fig. S2A, orient and number the
edges as indicated. Next, construct the dual of the (undirected) plane
graph, with vertices numbered as in Fig. S2B, and assign an orien-
tation to each edge of the dual such that A→B implies that the flow
on the edge between faces A and B is FB −FA, where Fα is the flow
anticlockwise around face α (Fig. S2B). This has incidence matrix

I=

0
BBBBBB@

−1 0 0 0 −1 0 0 1 1 0 0 0
0 1 0 0 1 −1 0 0 0 −1 0 0
0 0 1 0 0 1 −1 0 0 0 −1 0
0 0 0 1 0 0 1 −1 0 0 0 −1
1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 1 1

1
CCCCCCA
,

the rows of which are the cycle basis vectors. General face flow
components F= ðF1, . . . ,F6Þ then translate to edge flows Φ=
ðϕ1, . . . ,ϕ12Þ as ϕe =FαIαe. However, there is a degree of freedom:
adding a constant to each component of F results in the same Φ,
so, to obtain a unique correspondence between F andΦ, we fix the
external face flux F6 = 0. Let A be I with the corresponding final
row omitted and drop the final component of F. Then, for
Φ∈ ker D, ϕe =FαAαe inverts to Fα =Pαeϕe with P= ðAATÞ−1A.
Thus, the truncated dual Kirchhoff matrix ~L=AAT—which is in-
dependent of the edge orientations in Fig. S2B—reads

~L=

0
BBBB@

4 −1 0 −1 −1
−1 4 −1 0 −1
0 −1 4 −1 −1
−1 0 −1 4 −1
−1 −1 −1 −1 4

1
CCCCA
,

giving a noise covariance PPT = ~L
−1

in Eq. 6 reading

~L
−1

=
1
24

0
BBBB@

10 5 4 5 6
5 10 5 4 6
4 5 10 5 6
5 4 5 10 6
6 6 6 6 12

1
CCCCA
.

Observe that nonadjacent face pairs such as faces 1 and 3 have
correlated noise.

SI Complex Networks
Finally, we elaborate on discussions in the main text extrapolating
our results to expected behavior on large complex networks.
Unlike the cubic graphs we have focused on, a complex

network possesses a broad vertex degree distribution. This will
certainly affect transition rates, because the presence of even-
degree vertices deepens energy minima (Fig. S1). However,
because the effect of vertex degree is broadly independent of
cycle structure, we predict that the distribution of transition
rates will still qualitatively match the e-girth distribution. In Fig.
S3, we plot e-girth distributions derived from 10 instances each
of four random graph distributions on 1,000 vertices: fixed
degree 3, uniform, Barabási–Albert (“scale free”), and Watts–
Strogatz (“small world”). Of the four, random cubic graphs
display by far the highest e-girths, whereas the Barabási–Albert
and Watts–Strogatz graphs, commonly used as prototypes of
certain forms of real-life complex networks, both retain many
edges with low e-girth despite their size. Therefore, by this
measure, complex networks may exhibit a far greater proportion
of fast-switching edges than random cubic graphs on the same
number of vertices.

SI Numerical Methods
Numerical Integration and Waiting Times. Eqs. 2 and 6 were in-
tegrated by the Euler–Maruyama method with time step
δt= 5× 10−3. After an initialization period to t= 500, state transi-
tion waiting times in Figs. 1–3 were determined by applying a
moving average filter of width Δt≈ 3 to eliminate noise-induced
recrossings of ±1=2 without a true state change, rounding to the
nearest integer, and computing the times between changes in this
integer state. Waiting times were aggregated over sets of 16 inte-
grations to t= 4× 105 for each λ in Fig. 1, and over 24 (Fig. 2) or
8 (Fig. 3) integrations to t= 1.6× 106 for each graph in Figs. 2 and 3.

Graph Generation and Properties.Mathematica (WolframResearch,
Inc.) was used to generate graphs and their incidence matrices, and
to determine all graph-theoretic properties, including cycle lengths
and edge equivalence classes. The graphs in Fig. 3 (see also Fig. S4)
were chosen uniformly at random from the database of all non-
isomorphic bridgeless connected cubic graphs on 14 vertices ac-
cessible in Mathematica after filtering to discard those with nontrivial
automorphism group.
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Fig. S1. Stochastic cycle selection in two elementary graphs. (A) Flux–time traces from Eq. 2 for each of the three edges in the graph shown, signed according to
the edges’ arrows, with three different temporary configurations highlighted as indicated by i–iii. Parameters are λ= 2.5, μ= 25, and β−1 = 0.05. (B) Same as A, but
with an additional edge in the graph. States are more stable with even-degree vertices, because flux-conserving flows are possible with all edges flowing.

Fig. S2. Constructing a cycle basis for P4,1. (A) A planar embedding of P4,1, with edges numbered and oriented as shown. (B) The dual of the embedding in A, with
dual graph vertices (original graph faces) numbered as shown. Edge orientations depend on those chosen in A, as described in SI Text. Vertex 6 and its incident
edges, highlighted, correspond to the external face whose flux is fixed at zero.
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Fig. S3. Empirical probability distributions of e-girth determined from 10 graph realizations each from four random 1,000-vertex graph ensembles: (A) fixed
degree 3, i.e., cubic; (B) uniform with 1,500 edges; (C) scale-free Barabási–Albert with a degree k= 2 vertex added at every step; and (D) small-world Watts–Strogatz
with rewiring probability p= 0.5 and mean degree k= 4. The pseudo-real-life networks of C and D exhibit distributions with far more small e-girth edges than the
more generic random graphs in A and B.
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Fig. S4. The 20 nonisomorphic asymmetric cubic graphs in Fig. 3. Edges are colored according to e-girth as indicated in graph 1 and in Fig. 3. Graph 19 is that
illustrated in Fig. 3B. All planar graphs (graphs 2, 3, 5, 6, 7, 12, 16, and 19) are shown in a planar embedding.
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Fig. S5. Incompressible flow on a 15× 15 hexagonal lattice using the face cycle basis. (A) Plot of flux values over time for each face in an integration on the 15× 15
lattice, at λ=2.5, μ= 25, and β−1 = 0.05. (B and C) Configurations of the face fluxes at the times marked in A, along with the cycle configurations they represent.
Cycles are colored according to their orientation clockwise (cyan) or counterclockwise (magenta). Faces are ordered in A column-wise from bottom left to top right
of the lattice.
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Movie S1. Stochastic cycle selection in the graphs K4 (Left) and P3,1 (Right). Each graph shows an integration of the active network model up to t = 2×104, played
back such that 1 s is Δt = 900. Flowing edges above jϕej> 1=2 are cyan, nonflowing edges fluctuate from white at jϕej= 0 to gray at jϕej=1=2. Parameters are
λ= 2.5, μ= 25, and β−1 = 0.05.

Movie S1

Movie S2. Stochastic cycle selection in an asymmetric bridgeless cubic graph on 21 edges. The graph shows an integration of the active network model on the
graph shown in Fig. 3B (graph 19 of Fig. S4) up to t = 1.6× 106, played back such that 1 s is Δt = 72,000. Flowing edges above jϕej> 1=2 are cyan, nonflowing edges
fluctuate from white at jϕej= 0 to gray at jϕej= 1=2. Parameters are λ= 2.5, μ= 25, and β−1 = 0.05.

Movie S2

Woodhouse et al. www.pnas.org/cgi/content/short/1603351113 8 of 8

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1603351113/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1603351113/video-2
www.pnas.org/cgi/content/short/1603351113

