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Abstract

Recent experiments show that both natural and artificial microswimmers in narrow channel-like
geometries will self-organise to form steady, directed flows. This suggests that networks of flowing
active matter could function as novel autonomous microfluidic devices. However, little is known
about how information propagates through these far-from-equilibrium systems. Through a
mathematical analogy with spin-ice vertex models, we investigate here the input—output character-
istics of generic incompressible active flow networks (AFNs). Our analysis shows that information
transport through an AFN is inherently different from conventional pressure or voltage driven
networks. Active flows on hexagonal arrays preserve input information over longer distances than
their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be
inferred from marginal input—output distributions alone. This sensitivity further allows controlled
permutations on parallel inputs, revealing an unexpected link between active matter and group theory
that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of
generic autonomous information transport networks.

Introduction

Group theory [1, 2] forms the mathematical foundation of ancient [3] and modern [4] cryptography. Systematic
permutations of the symbols in a given alphabet define the most basic algorithms for encoding information
[3,4]. The efficiency and robustness of such encryption schemes is tightly linked to the structural properties of
the underlying permutation groups. This profound connection was first realised by the Polish mathematician
Marian Rejewski [5]in 1932 and, a few years later, used by Alan Turing to decipher codes produced by the
Enigma machine [6], a mechanical encoding device employed by the German Army during WWII. Nowadays,
information transfer and encryption assume ever-increasing importance in the development of new
technologies, from the internet [7] and smart phones [8] to quantum communication [9]. Yet, information
transport is also a salient feature of many, if not all, biological systems [10—12]. This raises interesting conceptual
and practical questions as to whether one can use biological or engineered active matter components [13—15] to
transport and encrypt information, and how efficiently such active information transportation devices can
operate relative to conventional passive information flow networks [16, 17].

Here, we explore these questions theoretically by focusing on quasi-incompressible active flow networks
(AFNs) that can be realised with dense suspensions of bacteria [ 18, 19] or other types of natural or engineered
microswimmers [20-23]. In contrast to voltage-driven electric [17] or pressure-driven microfluidic [24, 25]
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circuits, material and information transport in AFNs is facilitated by the conversion of chemical energy into
kinetic energy [19, 26, 27] at the level of the microscopic constituents, such as bacteria [ 19] or Janus particles
[20], which can carry information individually or collectively. Building on a mathematical correspondence with
discrete spin-ice vertex models [28], we will investigate the similarities and differences between the propagation
of input signals through internally driven active and externally driven passive flow networks for different lattice
geometries. This analysis shows that topological constraints intrinsic to incompressible AFNs enable more
robust information flow than in comparable passive networks. In the second part, we will demonstrate how bulk
topological defects in AFN lattices can be detected holographically from input—output correlations—that is,
from boundary flows alone without any observation of the bulk—and can be utilised to realise specific
permutation groups. In doing so, we will establish a fundamental connection between active matter flows in
complex topologies and the Cayley graph structure of permutation groups. We conclude by showing how these
ideas can be extended to general random graphs to achieve more efficient signal coding.

Results and Discussion

Active matter vertex models

Active matter systems self-organise and spontaneously flow by persistent conversion of chemical energy to stress and
are therefore, by nature, non-equilibrium systems. Their great diversity, encompassing motile cells [18, 29], driven
microfilaments [21] and artificial microswimmers [20, 22] to name just three classes, means that a wide range of
precise behaviours exist. Generically these systems possess non-Boltzmann steady state distributions and non-zero
probability currents in state space [30], but certain reductions and limits such as those for coloured noise [31, 32] can
reveal pseudo-equilibrium behaviour. In particular, previous work [18] has shown that a dense suspension of bacteria
confined within a lattice of interacting circular cavities can be captured by a pseudo-equilibrium model in coarse-
grained degrees of freedom, namely the average ‘spin’ of each circular cavity. Linear confinement has also been shown
experimentally to cause near-unidirectional flow in various active systems [19, 22, 23, 29], reducing complex
behaviour to a single degree of freedom. These ideas naturally extend to network-like environments, suggesting that
the behaviour of an AFN—that is, a network of narrow channels filled with dense active matter—can be reduced to
the coarse-grained mean flow along each channel of the network, represented by directed flows along the edges of a
graph. A dynamical model with active friction leads to slime-mould-like oscillatory pumping states [33], while in the
dense incompressible limit, a pseudo-equilibrium model based on that verified for circular confinement [ 18] displays
topologically-determined stochastic selection of network flow loops [28] mediated through flow interactions at the
mass-conserving junctions between edges. Extending this incompressible model to add inputs and outputs as
boundary vertices whose mass flux is controlled or free, respectively, leads to the ability to perform elementary logical
operations by appropriate network design [15]. It is this premise which we adopt here, formalised as follows.

LetI" be a graph with edge set E and vertex set V U OI', where V'is the set of interior vertices and O'are
degree-1 boundary vertices used as inputs and outputs. Every edge e € E is assigned an arbitrary orientation,
from which we define the |V| x |E|incidence matrix D = [D,.] where D, is —1 ifedge eis oriented outwards
from vertex v, +1 if e points into v, and 0 if vand e are not incident. A flow configuration ® = (¢,) onI"isthena
vector of signed flows ¢, € {—1,0, +1} alongeach e € E, where ¢, = +1 represents flow with the orientation
of eand ¢, = —1is flow against the orientation of e, so that the flux into vertex valongedge eis f,, = D, (.. A
non-zero flow |¢,| = 1indicates self-organised unidirectional flow along e at the typical velocity of the active
matter system under consideration, normalised to unity, while ¢, = 0 corresponds to a quiescent, overturning
or turbulent state within the channel with zero net flux. This discretisation of flow states is a simplification of
velocities fluctuating within a double-welled potential [28, 34], modelling the tendency of active suspensions to
adopt either a unidirectional flow state at a preferred velocity or, failing that, a qualitatively different state [19].

The space of permissible flows @ is constrained by flux conservation, through which we implement inputs
and outputs. Every internal vertex v € V must have as many in-flows as out-flows, corresponding to the flux
incompressibility condition

> fe =(D-®), =0.

Inputs and outputs are set and read through the flux at the boundary vertices OI' = 0T}, U 0Tty, where the
input vertices OI';,, and output vertices T, are disjoint. For a given digital input vector I = (I,) € {0, 1}1?
we impose that the vertex v € 01}, corresponding to input I, has net flux

vae = (D : q))v = -1,

Finl

so that an activated input injects matter into the network. Output vertices, on the other hand, are left
unconstrained to allow matter to flow out of them or not as network interactions dictate; the output vector
0 = (0,) € {0, 1}1%ul for flow state ® is then read off as the flow
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0,=3f,= (D),

through each v € Ol Finally, to prevent spurious matter inflow through the outputs, we impose that each
edge eincident to an output vertex (of which there is one per output, as outputs have degree 1) only permits flow
toward the output, ¢, € {0, +1}. In microfluidic realisations, such an active matter diode can be realised
through geometric channel patterning [35].

To model the spontaneous self-organised flow typical of active matter [18, 19, 23, 29], we adopt a pseudo-
equilibrium approach. Define the energy of a configuration ® to be

H@) = —A 19,
12 ecE

with polarisation strength constant A (where the factor of 1/12 is for consistency with previous continuum
models [28]). For a fixed input vector I we then assume a pseudo-equilibrium model selecting states according
to the Boltzmann distribution p(®|I) oc e=?#(® subject to the incompressibility and input—output constraints.
This favours configurations with more flowing edges, as we might expect from active matter systems in
confinement[19, 22, 29, 36]. Indeed, the established Toner—Tu model of self-organised flow [34, 37, 38] reduces
to that of overdamped diffusion in a double-welled potential when averaged along a narrow channel [15],
yielding Boltzmann statistics as per a Landau theory; even if real-world AFNs do not obey exact equilibrium
statistics in coarse-grained variables, as is likely, the intrinsic propensity of active matter toward flowing states at
characteristic velocities at the heart of the Toner—Tu model suggests that we should expect statistics at least
similar to the pseudo-energy fluctuations encoded in the Boltzmann distribution. The result is a form of vertex
model on general graphs in the same family as ice-type or loop models [39-42], endowed with input—output
capability, which qualitatively replicates the full continuous lattice field model of [28] (SM Text).

States comprise flowing edges with |¢,| = 1and non-flowing edges with ¢, = 0, with flows balanced at every
internal vertex and flow out of each activated input. If we now restrict I to have vertices of degree at most 3, then
incompressibility implies that flows become mutually excluding: each internal vertex must have either zero
flowing edges or two flowing edges, one in and one out, so stable states comprise non-intersecting flow paths
from each activated input to an output with the remaining edges filled by non-intersecting closed cycles of flow
(figures 1 (A) and (B)). Since this is where topology design has the greatest potential impact on active flow, we
restrict attention to this case here. We also confine ourselves to the low-noise regime (8)\)~! < 1 where
appropriate, relevant for strongly confined active matter in a well-controlled environment [19, 23, 43].

Topologically protected information transport

Active flow networks display markedly different characteristics compared to passive pressure-driven flows or
simple random walks. This is best explored in a lattice topology. Let I'be an M x N hexagonal lattice with N
inputs and N outputslabelledi = 1, ..., N, asin figure 1(A). We refer to the number M oflattice layers between
the inputs and the outputs as the depth of I'. When one input is activated, the AFN picks out a distinct path from
the input to an output, with any remaining space filled with vertex-disjoint closed cycles (figure 1(A)). The
particular output chosen is probabilistic [ 15], and taking an ensemble average (or time average, if dynamics are
specified) yields a probability distribution p(j|i) = P(O; = 1|I; = 1) for the output from a given input

(figure 1(C)).

Output from an AFN is markedly different to that of an equivalent passive flow network. We compare AFN
output to the steady-state output flux in a linear microfluidic network driven by a fixed constant inflow on 9I';,
equal to the input vector I, with zero (reference) pressure on 01, and equal resistance on every edge (see SM
Text for the mathematical formulation). Mass conservation implies that this has the same total input—output
flux as the AFN. Upon activation, the edge resistances drive the flow towards a unique attracting steady state,
whose distribution of output flux on 9T, can then be compared to the ensemble-averaged output (O) of the
equivalent AFN. In addition, the steady-state output distribution of this microfluidic network is equivalent to
the steady-state probability distribution of a symmetric random walk starting at input i with sinks at the outputs
[44]; we henceforth refer to either of these mathematically identical systems as ‘passive flow’. With a single input
active, so that I; = 1 for theactive inputiand I; = Ofor j = i, a passive flow network disperses the inputamong
all output nodes, while the equivalent ensemble-averaged output distribution (O) from the AFN instead retains
adistinct signature of its input for larger lattices where passive output is near-uniform (figure 1(C)). Thus, the
globally exploratory nature of active network flow allows for output from a non-trivial active network to be
traceable to the original input, whereas passive flow is virtually untraceable on all lattices.

When multiple inputs are activated, the vertex-disjoint input—output paths mutually exclude one another in
AFNs. This alters the output distribution in a fashion dependent on the graph topology, offering additional
control over signal propagation compared with passive networks. Furthermore, the discrete nature of active flow
means that each input can be traced to its output without visualising the intervening network by distinctly
marking the input flows. For a planar network such as that in figure 1, the order of the outputs must match the
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Figure 1. Topological protection of input—output correlations in planar AFNs. (A) Example configuration of active flow on a 7-input
13-deep hexagonal lattice with input 1 activated, with the input—output flow route highlighted. Thick edges are actively flowing, thin
edges are in a zero-flow state. (B) As in (A) but with inputs 1 and 2 both activated. The input—output flows are topologically prohibited
from crossing. (C) Marginal density maps of output distributions with one activated input at low noise (3\) ' = 0.02. Shown are
three depths of hexagonal lattice network for active flow (upper) compared to passive pressure-driven flow (bottom). Each map
indicates the probability of an output being activated for a fixed activated input. Active flow data was determined by exhaustive
evaluation (depths 1 and 3) and Monte Carlo simulation (depth 5) (SM Text). (D) Relative mutual information U, (X|Y) in
determining an activated input X, chosen uniformly at random, from observing a particular output Yat (BN™" = 0.02, for one
activated input over a range of hexagonal lattice sizes. Circles denote active flow, squares denote passive flow; comparing the two
shows the greater input information retention of active flow across non-trivial networks. Active flow data computed for small lattices
by exhaustive evaluation and other lattices by Monte Carlo simulation (SM Text). (E) As in (D), but for the information U,(X|Y)
between two activated inputs and outputs. Active flows in planar lattices preserve input ordering, so the mutual information is
bounded below by a non-zero constant.

order of the inputs: if input 1 is activated and connects to output 3, say, then input 2 can only connect to
output 4 onwards (figure 1(B)), in stark contrast to the linearity of passive network flow. This suggests that active
flows may be particularly adept at retaining input configuration memory when more than one input is activated.
The extent to which inputs can be inferred from outputs is captured by the mutual information [45].
Suppose we uniformly at random choose one input X to activate. This connects to one output Yaccordingtoa
topology-dependent probability distribution p(y|x) (figure 1(C)). If we can only measure the output and do not
know which input was activated, then how well the activated input can be inferred from an observed output is
described by the 1-input relative mutual information (SM Text)

1 p(ylx)
= — l .
Ui(X]Y) NlogN x§’yfp(y|x) Og[ () ]

This measures the information gained relative to the maximum possible log, N bits, so that U; = 1 means exact
input—output matching and U; = 0 means input and output are independent. The equivalent notion of output
observation in the case of passive flow is that of seeing a single random walker arrive at an output for random
walks, or observing the destination of a single input tracer particle in pressure-driven microfluidic flow.
Numerically evaluating U; over a range of hexagonal lattice sizes shows that AFNs preserve input information
over notably larger graphs than passive flow (figure 1(D)), allowing the activated input to be inferred with high
confidence using comparatively few system samples.

With two labelled inputs activated, mutual information [45] captures a fundamental difference between
AFNs and classical flow. The randomly chosen activated inputs X; and X, are now represented by an ordered
pair X = (X3, X5) with Xj = X;, where X| is labelled red and X;, is labelled blue, say. This yields an output pair
Y = (Y}, Y,), where Y] is the output observed red and Y, the output observed blue, again sampled from a
distribution p(y|x). The two-input relative mutual information is then (SM Text)
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Figure 2. Holographic detection of lattice defects. (A) Example active flowona5 x 5 lattice with 3 activated inputs. (B) Joint
distribution p(x, y, z) of activated outputs 2 — X, 3 — Y, 4 — Z for the three activated inputs 2, 3, 4 in (A) at low noise

(BN " = 0.02, shown by the three marginal densities derived from summing over one each of X, Yand Z as determined by exhaustive
evaluation (SM Text). Grey cells indicate topologically prohibited output orderings violating X < Y < Z.(C) Asin (A) but for alattice
with a planarity defect, allowing input—output streams to cross. (D) Output densities as in (B) but now for the defective lattice in (C),
demonstrating non-zero probabilities in regions of the distribution previously prohibited by topology.

1 pO1x)
U, X|Y) = x)lo s
) = N T PO g[ g ]

where the modified prefactor reflects the N (N — 1) possible labelled input pairs. Evaluating U, for AFNs and
classical flow (figure 1(E)) now yields a qualitative distinction: not only do AFNs preserve information better on
larger graphs, as with one input, but U, asymptotes to a non-zero constant 1/log, N (N — 1). This is because
mutual exclusion of input—output streams in planar networks means that these AFNs preserve the ordering of
their inputs, implying a guaranteed bit of information for even the largest planar lattices.

With regard to applications, the partial topological protection of input—output correlations in planar AFNs
suggests interesting possibilities for tuning and enhancing information propagation through the inclusion of
auxiliary control currents. Moreover, as we shall show next, it also allows holographic detection of non-planar
lattice defects from input and output distributions alone.

Holographic defect detection

IfI" is not planar then input streams can cross, yielding qualitative changes in the joint distribution of output
probabilities compared to that of a similar planar graph. Suppose, for instance, that inputs 2, 3 and 4 are activated on
the5 x 5 hexagonal lattice of figure 2(A). Denoting the activated inputs’ respective random outputs by X, Yand Z,
planarity of the lattice means that we must always have X < Y < Z (under our labelling of inputs and outputs as in
figure 2(A)). This implies that the joint distribution p(x, y, z) = P(2 — x, 3 — y, 4 — z)isonlynon-zero in the
small subspace x < y < z (figure 2(B)). Now, introduce a small planarity defect into the lattice by exchanging
endpoints between two horizontal edges of one hexagon (figure 2(C)), akin to the rewiring construction of Watts—
Strogatz networks [46]. Two input-output streams can now cross once, allowing output ordering to change and
thereby introducing non-zero probabilities within previously prohibited regions of p(x; y, z) (figure 2(D)). This
reflection of bulk lattice structure in the surface marginals presents a planarity rejection test if the intervening graph is
unknown or difficult to embed.

Realising permutation groups with active flows

Activating all inputs of a hexagonal lattice with crossover defects results in a stochastic permutation device. In
this case, since there are as many outputs as inputs, each permissible flow configuration defines a bijection
f:{l...,N} — {1, ..., N} (thatis, a permutation of the integers 1 to N) where input i connects to output f (i).
If the stream at input i is then given label v;, this arrives at output f (7). Denoting the vector of all input labels by

v = (v;) and the vector of output labels by w = (w;), where w;is the label read at output j, any such permutation
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Figure 3. Realising permutation groups through AFN concatenation. (A) Example flow through a 3-fold concatenation ofa3 x 5
hexagonal lattice with 3 planarity defects, realising the permutation (12)(345) as the composition (23)(45) o (2354) o (12)(45). (B) Groups
converged on by repeated concatenation ofa3 x 5 lattice with between 1 and 5 defects. Group frequencies are shown as their likelihood of
occurrence from random defect placements, determined over all possible configurations with each number of defects. The permutation set
for each graph was found by exhaustive evaluation from which the group convergence was then evaluated (SM Text). ‘@’ denotes non-
convergence in repeated concatenation.

can be compactly writtenas w = ov for some unique invertible permutation matrix o [1, 2]. Now, without any
crossover defects, planarity implies that the only possible o is the identity map, since flows cannot swap due to
the complete topological protection in this case. However, introducing crossover defects makes non-trivial &
possible. In general, an output configuration of such an AEN consists of a permutation o € ¥ randomly chosen
from the set 3 of all possible permutations, where ¥, and each permutation’s selection probability, is defined by
the placement of interior defects. Furthermore, when all inputs are activated, the lattice topology implies that
permissible flow configurations ® all have the same number of flowing edges and hence the same energy H(®).
The Boltzmann distribution oce H® is therefore uniform, rendering the flow states and permutation selection
probabilities independent of the noise strength (BN) " for these lattices.

As an example, consider the 1-defect lattice in figure 2(C). When all inputs are activated, this can realise three
different permutations f, mapping (1, 2, 3,4, 5) toone of (1,2, 3,4, 5),(1,3,2,4,5) or (2, 1, 3,4, 5). These are,
respectively, the identity and the transpositions (23) and (12) in group-theoretic cycle notation [2]. Thus, this
latticehasaset > = {0}, 05, 03} of three possible matrices representing these permutations acting on the input
vector v. The firstis the 5 x 5 identity matrix 0; = II5, while the second and third read

10000 01 000O0
00100 10000
=101 00 0} o3=|0 01 0 0} (1)
00010 00010
0000O01 000O0T1

These have respective selection probabilities p, = 1/3,p, = 1/2and p; = 1/6, as computed by exhaustive
evaluation (SM Text).

In many technological applications, including material mixing and signal encoding, one is interested not in
generating a few particular permutations but instead in realising an entire permutation group. For instance,
perhaps we wish to employ a microfluidic AFN to combine five components. If we want this to occur in any
random order at all, the full symmetric group Ss is called for; alternatively, we may have certain restrictions on
ordering—objects 1 to 3 must precede objects 4 and 5, say—necessitating subgroups of Ss acting on those five
objects. This can be compactly achieved by concatenation of an AFN with copies of itself. Repeatedly chaining
together a small hexagonal lattice containing one or more crossover defects (figure 3(A)) causes the input flows
to repeatedly permute, akin to a braid [47, 48], realising different permutation groups according to the lattice
defect structure. Formally, because label permutation ov obeys (matrix) composition (7 o o)v = T(ov),
passing the outputs of an AFN I straight into the inputs of a copy of I gives a new AFN with permutation set
32 = {07 : 0, T € X} built from all pairwise products of elements in Y. Concatenating a further copy of I
yields an AFN with set 2* = {poT : p, o, T € 2}, and so on. This process either converges, in that there exists
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anssuchthat X" = ¥*foralln > s, or eventually results in a repeating periodic sequence of permutation sets. In
general, concatenation converges when ¥¥ C ¥¥+1for some k, in which case it must converge on a group (SM
Text). Alternatively, Markov chain theory yields a geometric condition: concatenation converges precisely when
the Cayley graph generated by X contains a set of cycles whose lengths have a greatest common divisor of 1. The
underlying proofs, whose details are given in the SM Text, establish a remarkable mathematically rigorous
connection between topologically protected active matter flows and the Cayley graph structure of permutation
groups, with direct practical implications for material mixing and information encryption.

Continuing the example above, if the network in figure 2(C) is concatenated with one copy of itself, the
permutations > = {07, 03, 03} in equation (1) yield a larger set X = {a, 03, 03, 0y, 05} of five permutations,
where the two new elements read

Oy =

SO = OO
eNeNeN =l
SO~ OO
S oo o+
O~ O OO
— o O OO

0
0
0l 05 =
0
1

SO o O
[eNeReN =l
O~ O OO

These arise as 0y = 0,03 and 05 = 0303, representing the permutations (132) and (123) in cycle notation [2].
Concatenating a second copy of the network results in the 6-element set 32* = Y2 | {0}, where o4 represents
the transposition (13). Any further concatenation creates no new permutations—thatis, 3" = Yorn > 3—
so the concatenation converges, in this case to the symmetric group S acting on the first three inputs. Observe
that convergence was guaranteed by finding > C Y32, itselfa consequence of 3 containing the identity

(SM Text).

Through concatenation, a variety of groups can be constructed. Figure 3(B) illustrates the relative abundance
of the groups generated by repeated concatenation of 3 x 5 lattices with up to 5 local crossover defects,
determined by evaluating all possible networks with each number of defects. The largest possible group on five
inputs, the symmetric group Ss, is present, along with six of its 14 non-trivial non-isomorphic proper subgroups.
In fact, S5 can be generated even with only two defects, but this comes at the expense of many concatenations; as
the number of defects increases, the probability of generating Ss rises [49] and the requisite number of
concatenations falls (figure S1 is available online at stacks.iop.org/NJP /20,/035003 /mmedia). The swapping
performed by the local crossover defects is reflected in the subgroups generated: all but As are precisely those that
can be generated by a set of transpositions. Notable among the absences are the familiar dihedral groups Dg and
D, the symmetry groups of the square and pentagon, respectively. Though S5 x C, is generated frequently and
is technically isomorphic to the hexagonal symmetry group D, it only appears here through the natural action
of S3 x C, on 5 points rather than as hexagonal symmetries of 6 points. To generate these particular group
actions necessitates more complex fundamental permutations than the local swap defects we consider here. In
fact, these can be generated by more general AFN topologies, as we will soon describe.

Repeated concatenation continues to have a quantitative effect beyond the point where the qualitative effect
ends. As more copies are added on, even if the permutation set " is constant as n increases, the underlying
probability of generating each element of " changes with each additional copy. Provided ~" converges to a
group, Markov chain theory implies that these probabilities approach the uniform distribution in the limit
n — oo (SM Text), allowing fine-grained control over output frequencies. To exemplify this, consider once
more the network in figure 2(C) and let G = ¥ be the group it generates by concatenation. If we let P; be the
probability that a single copy of the AFN permutes state g; € Gtostateg; € G, then the probability that our
initial unpermuted (identity) state g; is sent to g; € G after n concatenations is Pj;. Using the permutation
probabilities found above, this transition matrix reads (SM Text)

1/31/21/6 0 0 0
1/21/3 0 0 1/6 0
1/6 0 1/31/2 0 0
0 0 1/21/3 0 1/6
0 1/6 0 0 1/3 1/2
0 0 0 1/6 1/2 1/3

with row and column indexes corresponding to the permutations as before. Then at n = 3 we have non-uniform
probabilities— P, ~ 0.32 versus P, =~ 0.06, for example—but by n = 20 these have converged to 1/6 at two
decimal places.

General random graphs
Finally, we turn to permutations realised by general graphs. As the internal structure linking inputs to outputs
becomes topologically more complex, many more permutations can often be realised with the same number of

7


http://stacks.iop.org/NJP/20/035003/mmedia

10P Publishing

NewJ. Phys. 20 (2018) 035003 F G Woodhouse et al

= J T Ep—— -I—
maximum T T
ol ¢T>0 T ]
BT7T=0 ¢
80 | 4 i

4

@

i;EHH |

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
bulk vertices

Figure 4. Efficient generation of permutations in random AFNs. (A) Example of active flow on a random cubic network with 5 inputs
and outputs. (B) Number of distinct permutations realised by a sample of random 5-input/output cubic AFNs at fixed numbers of
bulk vertices, at both non-zero (blue diamonds) and zero (red squares) noise strength T = (7. Graphs were generated by 10 random
choices of 5 input and output insertions in each of 50 samples of non-isomorphic random cubic graphs, discarding networks
possessing no valid ground state when all inputs are activated (SM Text). Markers denote sample median, bars are 10% and 90%
quantiles.

internal vertices than in a defect-riddled hexagonal lattice, trading complexity for functionality. General graphs
are also typically not independent of 3, commonly realising far more permutations when T = 37! > 0 beyond
the ground-state permutations seen when T' = 0. To illustrate this, we computed the exact number of
permutations || output by samples of input—output-augmented random cubic graphs at fixed (necessarily
even) numbers | V] of bulk vertices for | V| between 22 and 56 (SM Text). As shown in figure 4, | 2| clearly tends to
increase with |V|inboththe T = Oand T > 0 regimes. Indeed, the majority of 56-vertex graphs attain all
possible 5! = 120 permutations when T' > 0, thus directly outputting Ss with fewer vertices than any of the
Ss-generating concatenations in figure 3.

When repeatedly concatenated, zero-noise random AFNs generate a large zoo of Ss subgroups. Upon
analysing the random sample in figure 3(B), we found T = 0 AFNs generating almost all subgroups of Ss,
including the familiar Dg and D}, missing from the hexagonal lattices of figure 2(B). This suggests that general
AFNsat T = 0 can realise almost any desired group action on repeated concatenation. A less exotic list of groups
is generated when T > 0, identical to those in figure 2(B). However, the elements of rarer groups can likely still
be realised with high probability provided T'is low and the number of concatenations is as few as possible.

Conclusion

To conclude, recent technological advances in the fabrication of soft [50, 51] and fluid-based [20, 22, 26, 52] active
materials demand novel theoretical and algorithmic ideas to guide the functional design of autonomous logical units
[13—15], pattern recognition systems [53] and information transport devices operating far from thermal equilibrium.
Vertex models that account for the relevant physical conservation laws and locally driven matter fluxes offer a flexible
testbed for exploring generic properties and limitations of signal transduction in active systems. Building on this
framework, our analysis shows how topological constraints inherent to quasi-incompressible AFNs can be utilised to
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realise the actions of fundamental symmetry groups underlying discrete mixing processes and standard signal
encryption protocols, providing a conceptual basis for potential future implementation of such processes using active
matter-based devices.

The planar and non-planar network designs proposed and investigated here could be implemented and
tested in microfluidic chips, exploiting recent progress in 3D printing [54] and in the geometric control of
collective transport in dense suspensions of microorganisms [18, 19] and ATP-powered microtubule bundles
[23]. Furthermore, recent progress in experimental realisation of artificial magnetic and colloidal spin-ice
systems [40, 55, 56] suggests that the input—output spin-ice model studied here could itself be directly realised.
More broadly, however, the above results establish a direct link between active matter and ostensibly unrelated
mathematical concepts in information and group theory, thus promising novel symmetry-based approaches to
autonomous network design.
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