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A random search process in a networked environment is governed by the time it takes to visit every node, termed
the cover time. Often, a networked process does not proceed in isolation but competes with many instances of itself
within the same environment. A key unanswered question is how to optimize this process: How many concurrent
searchers can a topology support before the benefits of parallelism are outweighed by competition for space?
Here, we introduce the searcher-averaged parallel cover time (APCT) to quantify these economies of scale. We
show that the APCT of the networked symmetric exclusion process is optimized at a searcher density that is well
predicted by the spectral gap. Furthermore, we find that nonequilibrium processes, realized through the addition of
bias, can support significantly increased density optima. Our results suggest alternative hybrid strategies of serial
and parallel search for efficient information gathering in social interaction and biological transport networks.
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I. INTRODUCTION

From animals foraging to T-cells hunting pathogens to
proteins examining DNA, nature relies on carefully optimized
random searches at many scales [1-10]. This concept is not
limited to biology: robotic self-assembly [11], traffic flow
management [12—-14], and computer resource allocation [15]
hinge on optimizing decentralized exploration. In these dis-
tributed processes, the searcher, be it a protein, an animal, or
a network token, must often visit not just one site but many
locations connected in a network [16]. The critical measure of
efficiency is then the time to visit every node of the network,
called the cover time [17]. Single-searcher cover times are
known on simple networks such as linear chains, rings, and
other regular lattices [18-22], and significant progress has
been made on establishing transport statistics for more general
networks [16,23-28], providing a means to design topologies
that can be searched efficiently. However, when multiple
parallel searchers compete for space or resources, as often
occurs in the examples above, how to design optimal search
strategies remains a significant open question. Our central
result is that the optimal density of searchers depends heavily,
yet predictably, on network topology, implying that search
strategies can be made efficient by careful optimization of
topology and searcher quantity.

The exclusion process represents the most fundamental
model of competition for space [29-31]. It has been key
to understanding such diverse phenomena as cell migration
[32], molecular traffic [33,34], surface roughening [35], and
queueing [36]. Capitalizing on this breadth, we use the ex-
clusion process to model parallel searching of a network and
introduce the searcher-averaged parallel cover time (APCT),
the average per-searcher time for all searchers to visit all
nodes within a network. Strategy optimization then demands
an understanding of how both network topology and searcher
density impact the APCT. Consider, for example, a scenario
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with as many searchers as nodes. Placing all searchers on
the network simultaneously results in an infinite APCT, while
a simple “serial” strategy where a single searcher is placed
on the network, removed once it has visited every node and
replaced with a new searcher, one at a time, is almost always
inefficient. It is therefore critical to determine the optimal, or
most efficient, density of parallel searchers minimising the
APCT [Fig. 1(a)]. Through analytic and numerical results,
we find that this optimal density is heavily dependent on
network topology. We demonstrate that the spectral gap, which
quantifies the convergence rate of a single-searcher random
walk, is a strong predictor of a network’s density optimum
and outperforms simpler degree-based network statistics, as
measured by mutual information. We provide strategies for
optimal deployment of hybrid series—parallel searches allow-
ing for construction of efficiently explored networks. We
broaden to nonequilibrium processes by generalising to flux-
conserving asymmetric exclusion processes, finding a remark-
able nonmonotonic relationship between density optima and
the spectral gap. Our work provides an accessible route into the
design of optimal search strategies in complex environments
involving equilibrium and nonequilibrium processes.

II. AVERAGE PARALLEL COVER TIME
AND OPTIMAL DENSITY

We employ a symmetric exclusion process of M parallel
searchers on a network with N vertices (Where M < N). First,
an initial configuration of searchers is generated uniformly
at random with each searcher occupying its own node. The
searchers then perform mutually excluding continuous-time
random walks (CTRWs) with independent and identically
distributed exponential waiting times of mean T = 1. When
a searcher attempts to move, an adjacent node is picked
uniformly at random; if the node is vacant, then the searcher
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FIG. 1. (a) APCT on the ring lattice for interacting (x) and
noninteracting (4) searchers as a function of searcher density p =
M /N, where N = 100. The optimal density p* (marked) can be seen
as the minimum of the APCT; dashed horizontal line denotes the area
below which parallel search is faster than serial search. Each APCT
was calculated from 10° random walk instances. (b) Mean optimal
density of Newman—Watts networks with N = 100 as a function of
the number of shortcuts (example inset). Colored band indicates £1
standard deviation. Optimal densities were calculated (Appendix A)
for 1000 Newman—Watts realizations for a range of added edges.

moves there, and if not, then the move is aborted. Let Tri be the
time for searcher i to first visit r distinct nodes. (In practice we
evaluate 7' by counting the number of attempted jumps made
by all parallel searchers until walker i visits the rth distinct
site and rescaling by the average waiting time 1/M. This is
equivalent to describing the CTRW by a discrete-time random
walk with time step 1/M, which is sufficient when seeking
only first moments as we do here.) We define the parallel cover
time Cp = max;¢;g M{T,{,} as the time for all M searchers
to each visit all N nodes, and the expectation (Cp/) to be
taken simultaneously over the space of all initial configurations
and random walk instances [37]. The APCT, Sy, = (Cy)/ M,
then quantifies the economy of scale in parallel searching: If
(Cy) < MS, for some M > 1, then there is an efficiency gain
in parallel searching beyond the simple serial search strategy.
For a given network, let M* be the optimal number of searchers,
that is, the M for which Sy is minimized, and let p* = M*/N
be the equivalent optimal density. For numerical methods, see
Appendix A.

A. Efficient search for ringlike topologies

Parallel search of a ring lattice is optimal at a strikingly low
density [p* = 0.05 when N = 100; Fig. 1(a)], and it becomes
increasingly inefficient as M increases. This is due to the
strong confinement effects of single-file diffusion [38—43].
That said, parallel searching is still more efficient than simple
serial searching for a range of p [Fig. 1(a), dashed line].
Remarkably, however, a parallel search on a ring lattice can be
made significantly more efficient by introducing only a small
number of additional edges. To demonstrate, we consider a
form of the Newman—Watts ensemble [44] that interpolates
between the two extremal topologies of the ring lattice and the
complete network. Starting from a ring lattice, we add a fixed
number of random additional edges, or shortcuts [Fig. 1(b),
inset]. The optimal density rapidly approaches that of the
complete network, p* = 0.47, even with only 3—4% of the
possible shortcuts added on N = 100 nodes [Fig. 1(b)].
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FIG. 2. Spectral gap predicts optimal parallel search density.
Optimal densities were calculated for 1500 random networks on
N = 100 nodes with average degree between 2 and 5 (Appendix D).
Each point represents one network with average degree indicated by
color, with three topologically contrasting networks highlighted. Solid
gray curve denotes the mean MFA-predicted optimal density as a func-
tion of G from numerically determined single-searcher cover times.
Dashed red curve shows best-fit expansion p*(G;0.7556,0.2933).
Two real-world transport networks are indicated by stars: the London
Underground (lower) and American airports (upper).

Parallel search efficiency on the complete network can be
evaluated exactly. In Appendix B, we derive the APCT

_ -1y
Sw = M(N — M)

where h[i] is the ith harmonic number. The optimal density
of parallel searchers, p*, for a given N can then be calculated
from M* = argmin,, {Sy}, which gives p* — 0.5 in the limit
N — oo (Appendix B). Equation (1) can be written as Sy =
#Sy, where Sy is the noninteracting APCT (Appendix B)
and ¢ = (1 — N~")/(1 — p) is a mean-field correction. This
accounts for the average slow-down due to aborted moves by
assuming two-site occupancy probabilities to be products of
single-site densities (Appendix C). While it is exact for the
complete network by spatial homogeneity, this need not hold
in general.

For general networks, naive mean-field approximations
(MFAs) [29-31] can lead to drastically inaccurate estimation
of the APCT and optimal density. Taking the near-Gumbel-
distributed single searcher cover times on random networks
[16] and attempting to incorporate exclusion through rescaling
by ¢ fails for many networks: under this MFA the predicted
optimal density as N becomes large approaches p* = 0.5
(Appendix C), but for networks of low average degree, and
for the ring lattice [Fig. 1(a)] in particular, this is far from
the true p* evaluated numerically (Fig. 2). Insight into this
inaccuracy can be drawn from asymptotic estimates of the
APCT on the ring lattice in the high-density regime. Consider
M = N — k searchers with k <« N vacancies. Inspired by
particle-hole duality [38] we can follow the vacancies instead
of the searchers. The parallel cover time is then the time
taken for the net displacement of the vacancies to first reach
(N — 1)(N — k) (Appendix B). For large N the vacancies are

h{M(N — 1), ey
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approximately noninteracting, meaning their net displacement
is approximately that of a single vacancy moving k times faster,
that is, Tyoc = 1/k. Standard results [20] then imply

(N =DIN = DN — k) +1]
2k '

This estimate does extremely well in predicting the APCT
(Appendix B, Fig. 5). It is exact for k = 1, and only noticeably
deviates when p < 0.85 for N = 100. Equation (2) reveals
that the APCT at high density is O(N?), while the MFA
suggests an APCT of ¢Sy ~ O(N?), an order of magnitude
difference, highlighting the failure of the MFA to capture
spatial correlations.

SNn—k

2

B. General topologies and the spectral gap

Can we identify a topological heuristic to predict density
optima for general networks? Given the adjacency matrix
A and the diagonal matrix D whose entries are the node
degrees, define the random walk transition matrix P = D !A.
The eigenvalues {A;} of P determine how fast the probability
distribution of a single-searcher random walk converges to
its equilibrium (that is, mixes) [45]. The largest eigenvalue
is necessarily A; = 1, and we define the spectral gap, G, as the
difference in magnitude between the first and second largest
eigenvalues G = 1 — maxaogi<n{|Ai|}. The closer G is to zero,
the slower a random walk converges [45]. The spectral gap
is then a natural candidate for predicting density optima as
the features of networks that slow down convergence, such
as bottlenecks (identified through nodes of high betweenness
centrality [46]), also significantly increase the parallel cover
time. Furthermore, single-searcher cover times can be related
to the eigenvalues of the combinatorial Laplacian L =D — A
[23], which in turn relate to those of P = I — D~'L via the
normalized Laplacian [47].

There is a tight relationship between the spectral gap and
the optimal density of searchers for general networks (Fig. 2),
quantified through high mutual information (Appendix E).
Sampling over random networks of minimum degree two and
average degree between two and five (Appendix D) reveals that
topology has a huge impact on optimal parallel search strate-
gies: For a small spectral gap (Fig. 2, left-most inset), networks
have low average degree and a high concentration of nodes of
degree two, resulting in linear chains along which the single-
file diffusion of searchers significantly increases the cover time
[38—43]. Indeed, for a linear chain the parallel cover time is
finite only for a single searcher; for two or more searchers the
left-most (right-most) searcher will never reach the right-most
(left-most) site due to the effect of single-file diffusion. The
naive MFA fails to capture this relationship (Fig. 2, gray curve),
demonstrating the importance of long-lived occupancy corre-
lations. The MFA only becomes valid for networks of average
degree nearing five, where the density optima approach that
of the complete network (p* = 0.47 for N = 100). Typically,
these networks have a small fraction of degree two nodes and
are more highly connected (Fig. 2, right-most inset). A power
series p*(G;a,b) = GP[1/2 — (1/2 — a)(1 — G)], constructed
such that p*(1) = 1/2 to match the N — oo limit of the
complete graph, matches the data well (Fig. 2, red curve) and
provides an easily computed predictive approximation.

Beyond random networks, we find that two real-world
transport networks further validate this relationship in practice
(Fig. 2). First, we consider the London Underground network
(from Ref. [48], which includes the Docklands Light Railway,
with one spurious disconnected node deleted from the dataset).
The average degree of this network is 2.31 where the number
of nodes is 306, the spectral gap of the symmetric random
walk of a single searcher is 0.003 and the estimated optimal
density is 0.0915 (Fig. 2). Our second real-world network is
the top 500 busiest U.S. airports, where the nodes represent
each airport and an edge connects two nodes if there is at least
one direct flight between the two airports [49]. The average
degree of the network is 11.9 where the number of nodes is
500. The spectral gap of the symmetric random walk of a
single searcher is 0.0237 and the numerically estimated optimal
density is 0.26. Despite the network’s high average degree the
optimal density is still prohibitively low, which is excellently
predicted via its spectral gap (Fig. 2). Simpler statistics based
on the degree distribution fail in such cases and have lower
mutual information over our graph ensemble (Appendix E).

III. OPTIMIZING PARALLEL SEARCH STRATEGIES

Our results enable the design of optimal search strategies
for arbitrary numbers of searchers. Suppose M,y searchers,
potentially more than N, need to each cover a given network.
A hybrid series—parallel strategy comprises sequentially in-
troducing batches of searchers, with each batch covering the
network in parallel to completion before being removed and
replaced by the next batch. Let k; be the number of times
i parallel searchers are introduced sequentially; for exam-
ple, k; = 3 and k; = 4 denotes performing three successive
searches with one searcher and four successive searches with
two searchers. A hybrid strategy is then defined by the vector
k = (kq, ...,ky_1). The optimal strategy, Koy, minimizes the
overall cover time T = Z,N:_11 k; (C;) subject to the constraint

Zf\:ll ik; = M. As My increases the solution of this integer
programming problem typically yields a strategy comprising a
mixture of searcher numbers near the optimal density (Fig. 3).
To investigate the optimal strategy in the regime where
M > N > 1 we consider the corresponding continuous
optimization problem. Let C(p) be the mean parallel cover
time of the search process with searcher density p ~ i/N for
N > 1. We define k(p) as our real-valued strategy function (as
Mo > N) that gives the frequency of serial searches that have
searcher density p. Thus, our optimization process is to select
k(p) such that we minimize the total cover time functional

1
Tlk] = / k(o)C(p)dp, 3)
0

subject to the constraint

1
N / pk(p)dp = M. @)
0

We introduce a rescaled strategy function f(p)=
Npk(p)/ M and total cover time I'[ f] = I'[k]/ Mi;. We note
that the rescaled cover time is

- ! C 1
F[f]Z/ wdpz/ f(p)A(p)dp, (5
0 P 0
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FIG. 3. (a) Optimal search strategy as M, is increased for a
random network of N = 20 nodes (inset) with p* = 0.35. Values at
fixed M,y give the nonzero components of the strategy vector K.
(b) Mean number of searchers per instance (Ky) for the optimal
search strategies of the complete network, the random network in
(a) and the ring lattice on N = 20 nodes, showing the approach of
(Kopt) toward the optimal APCT densities p* = 0.45, 0.35, and 0.15,
respectively, for large M,,. APCTs are averages over 10° random
walk instances.

where A(p) = C(p)/(Np) is the APCT. Our final version of
the optimization problem is to minimize

1
PLf] = /0 F(0)A(p)dp. ©)

subject to the constraint

1
/0 f(p)dp = 1. (7)

The APCT, A(p), has a minimum value at the optimal density
p* € (0,1), thus the function that will solve our optimization
problem is f(p) = §(p — p*) or equivalently the optimal
strategy is k(p) = Md(p — p*)/(Np), i.e., to have all serial
searches operating at the optimal density p*. Thus, for large
networks whose optimal density becomes difficult to evaluate,
our results present a simple strategy to optimize mutually
excluding search: Approximate p* via the easily computed
spectral gap (Fig. 2) and then perform searches in batches at
this density.

IV. ASYMMETRIC SEARCH PROCESSES

Until now, we have only considered the symmetric ex-
clusion process, where searchers uniformly sample a target
node from their neighbors. However, many biological and
physical systems are not in equilibrium, possessing nonzero
probability currents in stationary state that markedly change
the possible physical behaviors [34]. To model this, we now
explore directed networks with bias in the choice of target
node. To avoid searchers accumulating at nodes we restrict to
flux-conserving (balanced) networks, where each vertex has
an equal number of inwards- and outwards-biased edges [and
is therefore necessarily of even degree; Fig. 4(a)]. For each
edge biased u — v, we define the transition probabilities as
Pu—v = (1 +2¢)/d, and p,_,, = (1 —2¢)/d,, where d,, d,
are the vertex degrees and ¢ € [0,1/2] controls the bias. Thus,
the probability a searcher exits a node through an outwardly
biased edge is 1/2 + .
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FIG. 4. (a) A random network for the asymmetric exclusion
process, where N = 100. The arrows depict the directional bias
of the random searchers between nodes. (b) Frequency of optimal
densities for a variety of biases. (c) Mean optimal density as a function
of spectral gap for symmetric (¢ = 0) and asymmetric (¢ = 0.1)
exclusion processes. Colored bands are +1 standard deviation.
(d) APCT at optimal searcher density for a variety of biases. Results
in (b) and (d) are from the same ensemble of 2250 random networks
of average degree between 2 and 5 (Appendix G). In (¢) an additional
2000 networks are included with average degree between 2 and 3.
APCTs in (d) are averages over 10° random walk instances.

Asymmetric processes facilitate a significantly greater op-
timal density than the equivalent unbiased process on the
ring lattice. We find numerically that the optimal density for
N =100 and ¢ = 0.25 is p* = 0.51 (with high confidence;
Appendix A) compared to p* = 0.05 in the symmetric case
e = 0. This is a marked increase in p* that even exceeds the
symmetrically biased complete network for which p* < 0.5.
Here, conservation of flux forces there to be only two viable ori-
entations for the edges, all either clockwise or anticlockwise,
effectively adding a constant drift to the symmetric process. As
for symmetric exclusion, intuition can be drawn from asymp-
totic estimates of the APCT in the high-density regime for the
ring lattice. Let p and g = 1 — p be the probabilities of moving
clockwise and anticlockwise, respectively. In Appendix B
we show that, for large N and small vacancy count k, the
APCT for M = N — k searchers with p > ¢ is approximately
Sn—ik ~ (N —1)/(p — q@)k. This is O(N) for a nonnegligible
bias, two orders of magnitude smaller than Eq. (2). In addition,
the APCTs in the low and high density regimes are both O (N)
(Appendix B) in contrast to the unbiased process, whose low-
and high-density APCTs we recall as O(N?) and O(N?),
respectively, indicating bias induces a qualitative change in
the APCT.

Beyond the ring lattice, general flux-conserving networks
of low degree also see a significantly enhanced optimal density
for sufficient bias, with a far narrower distribution of optimal
densities [Fig. 4(b)]. Dramatic increases in optimal density
particularly occur for networks with G & 0 [Fig. 4(c)]: These
have a high concentration of degree two nodes, implying

062301-4



TOPOLOGY-DEPENDENT DENSITY OPTIMA FOR ...

PHYSICAL REVIEW E 97, 062301 (2018)

many linear chains, the edges of which must have the same
directional bias [Fig. 4(a)]. More surprisingly, for networks
with extremely small spectral gaps (G =~ 0) we see a non-
monotonic relationship between G and p* on average. This
phenomenon is also captured by the APCT at optimal density
[Fig. 4(d)], where networks with G & 0 typically have APCTs
below those of networks with greater G. This shows that the
addition of flux-conserving bias can have a counterintuitive
impact on search efficiency and optimality (which can be
orientation dependent; Appendix F). For example, consider
Mo = 100 searchers on the random network in Fig. 4(a) using
the optimal serial-parallel strategy versus the optimal search
on the ring lattice. Without bias (¢ = 0), the random network
has an average search time of 6.6 x 10* and the ring lattice
has time 4.8 x 10°. In contrast, with ¢ = 0.25, these times
become 8.5 x 10* and 8.3 x 102, respectively. Thus, random
flux-conserving bias inverts the networks’ relative efficiency,
implying care must be taken when attempting to improve the
efficiency of network search processes by naive biasing.

V. SUMMARY

To conclude, we have introduced the APCT as a funda-
mental measure of how efficiently a network can support
mutually excluding random search processes. We found that
the optimal density of concurrent searchers can vary from
1—2% to nearly 50% depending on topology, and we showed
that this topological dependence can be efficiently captured
by the spectral gap for both artificial random graphs and
real-world transport networks. Finally, we generalized to a
biased, nonequilibrium process and uncovered a qualitative
change in the topological dependence of optimal densities. This
evidences how the transport process itself must be taken into
account when optimizing random search, and it leads us to
ask whether there is an efficient statistical characterization of
the topology—transport interplay for general active networked
processes [33,50-52]. More broadly, our work paves the
way toward strategies for topology optimization in process
allocation and flow transport problems across physical and
biological networked systems.
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APPENDIX A: NUMERICAL EVALUATION OF COVER
TIME STATISTICS AND OPTIMAL DENSITIES

All cover time statistics presented in this work were cal-
culated as follows. We do not explicitly sample from the
exponential waiting time distribution; rather, we sample the
next attempted jump and update the time statistic of interest,
t, by the average waiting time, t =t 4+ t/M. As we are only
interested in the first moments of the cover times, linearity of
expectation implies that this suffices.

We now detail our numerical procedure for evaluating
optimal densities. Suppose we have a network with N nodes
and we wish to calculate the optimal number of parallel
searchers, M*, that minimizes the APCT. For efficiency we
begin using a small number of random walk instances (initially
10%) that we increase as we get closer to M*. Starting at M = 1
we calculate the average cover time Sy, then increase M by one
and run another sample of random walk instances, calculating
S; and so on. After generating a new APCT for j + 1 parallel
searchers we ask whether S;; > S; to see whether j is a
candidate for M*. If not, then we increase M by one; however,
if so, then we increase the number of random walk instances
to 10* and return to the previous number of parallel searchers
J, where we recalculate S; and S 1, and check again to see if
Sj+1 > S;.Once we have moved to 10* random walk instances
we still check to see if the new APCT is greater than the old
one, as before. Once we find a density of parallel searchers that
appears to be the minimum, we increase the number of random
walk instances used for the final time to 10°. Then the number
of searchers that are found to minimize the APCT using 10°
random walk instances is taken to be M*, the optimal number
of searchers. This was typically enough realizations such that
the standard error when calculating the APCTs resulted in
mutually excluding 95% confidence intervals either side of
the optimal density.

APPENDIX B: AVERAGE PARALLEL COVER TIMES
FOR RINGLIKE TOPOLOGIES

1. Complete network

We consider the complete network with N nodes. First
we calculate the APCT without interactions. Let X' be the
time taken for the ith searcher to first visit » + 1 distinct
sites, given it has just visited r distinct sites. Note that X'
is geometrically distributed with success probability (N —
r)/(N — 1). Then the mean cover time for the single searcher
is (C1) = YV N (XE) = (N — DA[N — 1], where h[i] is the
ith harmonic number. For M noninteracting searchers we
start with M distinct sites covered (if every searcher initially
occupies its own node) and the parallel cover time is the
time taken to visit M N distinct sites (N distinct sites for
each of the M searchers). We define Y, to be the time
taken for the overall number of distinct sites visited by the
entire population to hit » 4+ 1 given r distinct sites have just
been visited. Y, is now geometrically distributed with suc-
cess probability (MN —r)/[M(N — 1)]. Therefore, (Cy) =
1/M Y MM2Ny,) = (N — Dh[M(N — 1)], where the prefac-
tor of 1/M appears as the expected time for the next jump
for M random searchers. Thus, the APCT for the complete
network for noninteracting searchers is

Sy = uh[M(N - D). (B1)

M

To include the effect of interactions, we need to calculate
the probability that an attempted jump is not blocked by
another searcher. Due to the unique topology of the com-
plete network this probability is simply (N — M)/(N — 1).
We can redefine the geometrically distributed variables Y,
to have success probability (MN —r)/[M(N — 1)] x (N —
M)/(N — 1). The APCT for the complete network with M
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interacting searchers is therefore

(N -1y

Suy=——"""-—

M(N — M)
where we note that Sy; = (N — 1)/(N — M)Sy is exactly the
MFA, discussed in Appendix C. Rewriting in terms of the
density, p = M /N, and taking the limit N — oo, gives

(N —1)? 1

Np(N — Np) p(l—p)

To find the optimal density, we then differentiate the right-hand

side of Eq. (B3) and equate the derivative to zero, this yields
the relation

hIM(N = 1], (B2)

hINp(N — 1)] ~ log(pN?). (B3)

= log(p*) + log(N?). (B4)
1—=2p*
For the equality Eq. (B4) to hold as N — oo we need that
p* — 1/2 (as p* — 0 yields a trivial solution). Thus, the
optimal density for parallel search on the complete network
is p* = 1/2. Substituting in p* = 1/2 + £ and linearizing in
& we arrive at

~ 1[1 - 2log2NH] ™" (BS)

For large N, £ ~ —(8log N)~! and so &€ < 0 and & — 0, thus
p* — 1/2 from below. Moreover, for N = 100 we have & ~
—0.03 and so p* ~ 0.47.

2. Symmetric search on the ring lattice
in the high density regime

a. One vacancy

Consider a ring lattice of N nodes with M =N — 1
searchers each occupying their own node. Rather than model-
ing the searchers moving we can instead model the vacancy as
arandom walker. If the vacancy jumps N — 1 times clockwise
(anticlockwise) then every single searcher has jumped one site
anticlockwise (clockwise). Thus, we can see that the mean
cover time for all searchers to visit all nodes is the mean
first passage time of the vacancy to visit (N — 1)? + 1 distinct
nodes. On an infinite lattice in one dimension, itis a well known
result [20] that the mean first passage time for the span of the
random walk to visit r distinct nodes is 7(r — 1)/2. Therefore,
the mean cover time for N — 1 interacting searchers on a ring
is

(N-=12+1
(Cn-1) = ( ) . (B6)
The APCT for the ring lattice with N — 1 parallel searchers is
therefore
1 (N-12+1
Sy = —— . B7
N1 = ( ) ) (B7)

For large N, this is O(N?).

b. Several vacancies

We again have a ring lattice with N nodes. Let M = N — k
be the number of searchers and suppose that k < N so we are
still in the high density regime. We now consider, as before,
the random walk of the k vacancies instead of the searchers

10¢ T T T T

+ numerical
asymptotic

APCT

104 1 1 1 L
0.75 density 1

FIG. 5. APCT for the ring lattice in the high-density regime where
N =100. The +’s represent data generated from simulations of
the search process, the solid curve is an interpolation of the APCT
calculated using the asymptotic estimates in Eq. (2). All APCTs were
calculated from 10° random walk instances.

directly. In the limit of large NV, the vacancies are noninteracting
and therefore we can treat the vacancies as being approximately
independent. The net displacement of the k vacancies can
then be approximated as the sum of k independent normally
distributed random variates with mean zero. Equivalently we
consider a single vacancy that moves on average k times faster,
that is, with mean waiting time 7y, = 1/k. This random walker
needs to visit (N — 1)(N — k) + 1 distinct sites in order for all
the searchers to have visited every site, thus the mean cover
time is
1
(Cn—k) z
Note that the factor of 1/k appears because the collective
vacancy moves k times faster than a single vacancy. The APCT
for the ring lattice in the high density regime is therefore

1 ((N— 1)(N—k)+1>
k(N —k) 2 '

We see that the APCT in the high density regime is still of
magnitude O(N?). The asymptotic estimate Eq. (B9) of the
APCT matches well to simulations in the high density regime
(Fig. 5).

(B8)

<(N — DN —k) + 1>
5 .

SN—k (B9)

3. Asymmetric search on the ring lattice in the high
density regimes

a. Single searcher

We define a random walk on the integers, Z, where the
searcher starts at the origin and at each time step moves to
the right with probability p or left with probability g = 1 — p.
Chong et al. [53] showed that the expected number of steps to
reach m distinct sites (not including the origin) is

_ gm—lhm—l

Sm—1Sm

(Tn) (B10)
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where g = Yo + Dp g, he = Yol + Dp'g*,
and s; = Y p'g"~. For a lattice of length N we can write
down directly the expected cover time,

_ 8&n—2hn—2

(C1) (B11)

SN-2SN-1
For p > g and large N it is known that the cover time is
asymptotically

1

(Cy) ~ —{N S U R 0[N2<q/p)N]}. (B12)
pP—q pP—q

b. Single vacancy

We now consider N — 1 interacting searchers on a ring
lattice of length N with asymmetric transition probabilities
p and g. To calculate the parallel cover time we consider the
vacancy as a random walker on the integers Z. The vacancy
has to visit (N — 1)? distinct sites (not including the origin) in
order for every searcher to have visited every site. Therefore, if
weletm = (N — 1)?, the average number of jumps the vacancy
has to make is given in Eq. (B10). In the limit of large N we
have that the APCT for N — 1 searchers is

ORI S <(N—1)2——q ) (B13)
(p—q)XN—1) p—q)

Thus, for moderate bias where p — ¢ is not small, the APCT
for N — 1 searchers is two orders of magnitude smaller than
the APCT in the case of the symmetric exclusion process.

SN*I

¢. Multiple vacancies

We consider the case where we have k vacancies, where k <<
N. As for the symmetric exclusion process we consider instead
a single asymmetric random walker that moves on average k
times faster than a single vacancy, and we are interested in the
time taken for the vacancy to visit m = (N — 1)(N — k) new
sites (not including the origin). Therefore, we can write down
the APCT for the high density regime as

1 q
Syop~—-————|(N=1D(N —k)— ——
Nk (p—q)k(N—k)[( X ) p—q}
N -1
~—_— B14
(p— @k ®B14)

In Fig. 6 we provide a plot of the APCT for an asymmetric
random walk on a ring lattice with transition probabilities p =
0.75 and g = 0.25 for all numbers of searchers, as well as the
estimates in the high density regime, where we see excellent
agreement for k < 5.

APPENDIX C: THE MEAN-FIELD APPROXIMATION

The MFA rescales nonexcluding cover times by approxi-
mating how many additional jumps are needed when exclusion
is considered, thus accounting for aborted moves. To approx-
imate this scaling we consider the occupancy probabilities
of nodes adjacent to a searcher attempting a move. Let O,
denote the occupancy of node v, where a value 1 corresponds
to the node being occupied and a value O to the node being
vacant. For a searcher at node w, let v be the neighboring site
which the searcher attempts a move to. The probability the

200 T T T T T T T T T T

e numerical
asymptotic

APCT

O I I 1 1 1 1 1
density

FIG. 6. The APCTs of an asymmetric exclusion process on the
ring lattice, where p = 0.75and g = 0.25, from simulation (asterisks)
and from the analytical approximation in the high density regime
[solid line; Eq. (B14)]. All APCTs were calculated using 10° random
walk instances.

neighboring node is vacant (i.e., the move is successful) is
P(0, = 0|0, = 1). Bayes’ rule allows this probability to be
written in terms of a two-site occupancy probability, P(O, =
0,0, = 1)/P(O, = 1). The MFA comes from approximating
the two-site occupancy probability to be the product of single-
site occupancy probabilities: P(0, = 0,0, =1) =~ P(0O, =
0)P(O,, = 1). Therefore, the probability of the attempted move
being successful is approximately P(O, = 0) and thus is
independent of the searcher location w. This probability is the
fraction of the number of vacant sites over the number of total
sites that are not w, namely, (N — M)/(N — 1). Denoting (C)
and (C) to be the excluding and nonexcluding cover times,
respectively, we approximate (C) = (C) x (N —=1)/(N — M)
or equivalently (C) = ¢(C), where ¢ = (1 — N~H/(1 — p)
and p = M/N.

We consider the cover time of a single searcher on a general
network. Following Ref. [16], suppose that the cover time is
Gumbel distributed with parameters u € R and 8 > 0. The
probability density function p(¢) of the cover time is

- ol 52 o152)]

where y is the Euler-Mascheroni constant and the mean cover
time is yB + w > 0. Introducing the general scaling x = (¢ —
)/ B gives the standard Gumbel distribution.

Now let the maximum cover time of M independent
random walkers be o = max{t,...,t)}, or in the rescaled
variables y = max{xy, ...,x)}. Due to independence of the
individual cover times y is also Gumbel distributed with
(y) = v + log(M). We transform the coordinates back to give
(o) = B{y +log(M) + u/B}. The APCT for M noninteract-
ing searchers is then

(ChH

SMzg{y +1og(M)+ﬁ}. (C2)

B
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(Note that for the APCT with interactions we cannot make
analytic progress witho = max{zy, ... ,#)}, as before, because
the individual cover times, ¢;, are no longer independent and
so we cannot easily apply extremal value theory.) The MFA
Sy = ¢Sy, where ¢ = (1 — N~1)/(1 — p), then gives an
approximate expression for the APCT with interactions

pl—N""
M=

Nop(1 — p)
We would like to find the density that minimizes the APCT for
a network that has a single particle cover time that is Gumbel

distributed with parameters (i, 8). Setting dSys /dp = Oto find
the optimal p = p* yields

{y +log(Np) + %} (C3)

- y + 5 +log(N) + log(p®).
1 —2p* p
similar to Eq. (B4). Note that y + /B > 0 as the mean cover
time must be positive and S is always positive. Then for
Eq. (C4) to hold as N — oo we require that p* — 1/2 (as
p* — 0 yields a trivial solution). Substituting p* = 1/2 4 &
into Eq. (C4) and linearizing in & we find that

1 m N\T"!
$~§|:1—2(y+g+log3>} .

Thus, as N — oo, we have £ < 0 and & — 0, so we conclude
that p* — 1/2 from below.

To justify the assumption that the cover times are Gumbel
distributed, for all 1500 networks used to generate Fig. 2 we
simulated n = 10° cover times, #;, for single searchers and
used the data to calculate maximum likelihood estimators for
the Gumbel distribution, which are

(C4

(C5)

s ¢ Y tiexp(—t; /B)
= — ti — : = C6
g n ; > i—1 exp(—1;/B) (€0
and
. 1 .
p=-p IOg{ - ZCXP(—E/ﬂ)}- (CT)
i=1

Using the maximum likelihood estimators we rescaled the
cover times using the transformation x = (r — /1)/8 and
present the distribution of cover times for each of the networks
against the standard Gumbel distribution. We see in Fig. 7
that across the entire range of the networks seen in Fig. 2 the
Gumbel approximation is valid.

APPENDIX D: GENERATING RANDOM
SYMMETRIC NETWORKS

In this section we explain the procedure used to sample the
random networks seen in Fig. 2.

1: Select m and N, the required number of edges and the
number of nodes of the network respectively, such that
m > N. .

2: Sample uniformly the target degree distribution, d, such
tpat every node has degree at least two, i.e.,
d =2(1,...,1)+Multinomial(2(m — N),N).

3: Allocate d; stubs to the ith node fori € {1,...,N}.

4: while there are stubs remaining do

100 T T T T T T T T T T
.- = Gumbel
1485 - MLE fits
2
(7]
c
(O]
©
2 .
E
@
Q
o
a
1072 M i ﬁ."n\ 1
-3 8

rescaled cover time

FIG. 7. The rescaled distributions for the cover times of all 1500
networks used to generate Fig. 2 (red) against the standard Gumbel
distribution (black). The cover time distributions for each network are
estimated using 10° random walk instances.

5: if the only remaining connections to choose from
result in self-loops or multiple-edges then start over
and return to step 2.

6: else select two distinct nodes (avoiding self-loops)
with stubs remaining uniformly at random and connect
them with an edge only if they have not already been
connected (avoiding multiple edges).

7: endif

8: end while

9: if the resulting network is not connected then return to
step 2.

10: else take the resulting network to be a single realization.
11: end if

APPENDIX E: QUANTIFYING THE PREDICTIVE
CAPACITY OF THE SPECTRAL GAP VERSUS THE
AVERAGE DEGREE

Here, we evidence the lesser predictive capacity of the
average degree compared to the spectral gap. We present
estimates for the uncertainty coefficient between the optimal
density, p*, and two network properties: the spectral gap, G, and
the average degree, d. For two random variables X and Y, the
uncertainty coefficientis definedas U(X|Y) = I(X,Y)/H(X),
where I(X,Y) is the mutual information between X and Y
and H(X) is the Shannon entropy of X. This measures what
proportion of the total possible information about X we can
learn by observing Y, with 0 < U(X|Y) < 1. A coefficient of
zero means that X and Y are independent, while a coefficient
of one means that ¥ completely predicts X.

As we do not have access to the distributions for the optimal
density or the spectral gap, we must rely on estimations of the
mutual information. We use the algorithm proposed by Ross
[54]. For the data presented in Fig. 2 the uncertainty coefficient
between the optimal density and the spectral gap is estimated to
be U(p*|G) = 0.4835 while for the same networks the average
degree gives an uncertainty coefficient of U(p*|d) = 0.3769,
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FIG. 8. The same networks as in Fig. 2, with optimal density now
plotted against average network degree.

demonstrating greater mutual information between the optimal
density and the spectral gap compared to the average degree.

To see this, in Fig. 8 we replot Fig. 2 with average degree on
the horizontal axis. While there is still a good correlation, visual
inspection suggests that even our restricted ensemble networks
of low average degree are not as well correlated as with spectral
gap, with a greater number of outliers. Our two real-world
networks are notable examples: the London Underground
network, marked in Fig. 8, clearly deviates from the bulk, while
the U.S. airports network is an even worse match to the trend
at the off-axis point d =11.9,p* = 0.26. Indeed, consider two
of the sampled networks from Fig. 2, shown in Fig. 9, which
have identical degree distributions {3,3,3,3,2, ...,2}. We find
that the network in Fig. 9(a) has an optimal density p* = 0.01
while thatin Fig. 9(b) has p* = 0.11, differing by a factorof 11.
Thus average degree (or any degree distribution statistic) can
be a poor predictor of optimal density. However, the spectral
gaps for these networks are, respectively, G = 0.0005 and
G = 0.0012, with the more-than-doubled spectral gap of (b)
compared to (a) accounting for its higher optimal density,
particularly since small changes in G near zero have large
effects on p*.
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FIG. 9. Two sampled networks from Fig. 2 that have identical
degree distribution but markedly different optimal densities: (a) p* =
0.01, (b) p* = 0.11.
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(

APCT

95

035 searcher density 0.44
FIG. 10. (a—e) Five distinct flux-conserving (balanced) bias ori-
entations for a given fixed undirected network. (f) The APCTs for
each of the graphs (a—e) as a function of searcher density near the
optima. Each APCT is calculated from 10° random walk instances.

APPENDIX F: OPTIMAL DENSITY AND ASYMMETRIC
ORIENTATIONS

There are typically multiple topologically distinct ways
to bias the edges of the same undirected network, even
when fluxes are balanced. These different biases can induce
different cover time properties. For example, consider the
five distinct orientations of the same network in Figs. 10(a)—
10(e). For bias strength ¢ = 0.1 these have optimal densities
p* =0.40,0.41,0.41, 0.40, and 0.40 for Figs. 10(a) to 10(e),
respectively (with high statistical confidence). While these
differences are slight, the corresponding APCTs differ more
markedly [Fig. 10(f)], and such differences will be particularly
important if a large number of searchers are being employed
in a hybrid series—parallel search strategy. In larger networks,
we would expect this variation between different directional
biases to be amplified.
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APPENDIX G: GENERATING RANDOM BALANCED
DIRECTED NETWORKS

In this section we describe the sampling procedure for the
asymmetric random networks in Fig. 4.

1: Select m and N, the required number of edges and the
number of nodes of the network respectively, such that
m > N.

2: Sample uniformly the target degree distribution for
outwardly biased edges, doy, such that every node has
outward degree at least one, i.e., doy = (1, ..., 1)+
Multinomial(m — N,N).

3: Set the degree distribution for the inwardly biased edges
to be din = dowr-  _

4: Allocate dyy (i) = diy(i) outward stubs and inward stubs
to the i-th node fori € {1,...,N}.

5: while there are stubs remaining do

6: if the only remaining connections to choose from
result in self-loops or multiple-edges then start over
and return to step 2.

7 else select uniformly at random a node with an
outward stub and a distinct node with an inward stub.
Connect these two nodes with an edge with preferential
direction from the outward node to the inward node as
long as these nodes have not been connected
before.

8: endif

9: end while

10: if the resulting network is not connected then return to
step 2.

11: else take the resulting network to be a single realization.

12: end if
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