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A zero mode, or floppy mode, is a nontrivial coupling of mechanical components yielding a degree of
freedom with no resistance to deformation. Engineered zero modes have the potential to act as microscopic
motors or memory devices, but this requires an internal actuation mechanism that can overcome unwanted
fluctuations in other modes and the dissipation inherent in real systems. In this Letter, we show theoretically
and experimentally that complex zero modes in mechanical networks can be selectively mobilized by
nonequilibrium activity. We find that a correlated active bath actuates an infinitesimal zero mode while
simultaneously suppressing fluctuations in higher modes compared to thermal fluctuations, which we
experimentally mimic by high frequency shaking of a physical network. Furthermore, self-propulsive
dynamics spontaneously mobilize finite mechanisms as exemplified by a self-propelled topological soliton.
Nonequilibrium activity thus enables autonomous actuation of coordinated mechanisms engineered
through network topology.
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Soft, electronics-free assemblies capable of autonomous
motion and reconfiguration are emerging as the basis of
new adaptable smart materials. Macroscopic morphology
schemes, such as snap through [1–5] and buckling [6–8]
driven by heat [9] or chemo-fluidics [10], are comple-
mented by the robustness of topological modes [11–15] to
give a wide set of components based on elastic networks
[16–20]. In such networks, a zero mode (ZM) arises as a
degree of freedom with no resistance to small deformation,
either as an infinitesimal zero mode (IZM) with resistance
at a nonlinear order [21–29] or a mechanism with a
continuous range of motion [25–27,30,31]. A designed
ZM can potentially be exploited as a complex coupling
[32,33] in an internally driven material. However, actuation
of a ZM can be hampered by indiscriminate simultaneous
excitation of nonzero harmonic modes (HMs), particularly
in noisy microscopic systems [29,34–38]. Nonequilibrium
processes [39], which support intricate topological edge
currents [40–42] and unorthodox stress responses [43,44],
may hold the key to overcoming this actuation dilemma.
In this Letter, we show that active matter provides

effective schemes to autonomously actuate a mechanical
ZM. Active biophysical systems, such as bacterial suspen-
sions or self-propelled microswimmers, convert disperse
environmental energy into directed motion [45–47].
Tracers in an active bath, and the active particles them-
selves, then have positional statistics differing from thermal
white noise [48–50]. This statistical “color,”which depends
on properties such as fuel availability and suspension
density, can be used to drive mode actuation statistics

away from equilibrium in a controllable fashion [51,52],
meaning features such as geometric asymmetry can be
exploited to do work [53,54]. First, we show that correlated
noise generated by an active matter bath [49] can actuate a
complex mechanical IZM while markedly suppressing
HMs to a degree dependent on temporal correlations, as
well as exemplifying experimentally that fluctuation-based
IZM actuation can be mimicked by simple high-frequency
shaking. We then broaden to self-propulsive Rayleigh
activity [55–57], appropriate for a network whose nodes
have intrinsic motility [58]. We show that this scheme
mobilizes a full mechanism comprising a propagating
domain boundary in the SSH lattice [11,27], suggesting
that Goldstone modes of arbitrary complex systems can be
mobilized by nonequilibrium driving [51,59,60].
To gain intuition about the core idea, consider this basic

example: a mass is held between two fixed points, x̂ ¼
ð1; 0Þ and −x̂, in the plane by two identical springs of unit
natural length and stiffness [Fig. 1(a)] [38]. Let x ¼ ðx; yÞ
be the offset of the mass from its equilibrium (0,0). The
total elastic potential energy is

HðxÞ ¼ 1

2
½ðjx − x̂j − 1Þ2 þ ðjxþ x̂j − 1Þ2�: ð1Þ

If the mass is excited by thermal noise of temperature T, its
position is Boltzmann distributed with pðxÞ ∝ e−H=T . To
leading order in T ≪ 1, p can be approximated by p0ðxÞ ∝
e−H0=T where H0 ¼ x2 þ 1

4
y4 [38]. This bare Hamiltonian

shows the two eigenmodes: an HM of frequency
ffiffiffi
2

p

PHYSICAL REVIEW LETTERS 121, 178001 (2018)

0031-9007=18=121(17)=178001(6) 178001-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.178001&domain=pdf&date_stamp=2018-10-23
https://doi.org/10.1103/PhysRevLett.121.178001
https://doi.org/10.1103/PhysRevLett.121.178001
https://doi.org/10.1103/PhysRevLett.121.178001
https://doi.org/10.1103/PhysRevLett.121.178001


parallel to the springs, and an IZM perpendicular to the
springs. Scaling considerations then imply that the varian-
ces hx2i and hy2i vary as T and

ffiffiffiffi
T

p
, respectively. The fine

details can be seen by formal expansion in
ffiffiffiffi
T

p
(Supplemental Material [61]), in which interaction cross
terms are negligible as T → 0; this does not hold in the
more complex examples below, where broken symmetries
induce non-negligible interactions ∝ xy2 in H0 that can
cause strong violation of naive equipartition hx2i ∼ T=ω2.
Either way, the basic T-scalings still hold, so hy2i=hx2i→∞
as T → 0. Thus fluctuations in the IZM dominate those in
the HM at a low temperature.
Uncorrelated noise is a crude tool, with only one control

parameter. Actuation by biological or chemical active
matter [58,66] can allow finer tuning. The forces generated
by a motile bath can be modelled by an Ornstein–
Uhlenbeck process ξ obeying τ_ξ ¼ −ξ þ η, where η is a
thermal process with variance 2γT for amplitude T and
friction γ, and τ is the correlation time [50,67]. These
parameters depend on the properties of the active medium
[49], and so by changing these properties—density, temper-
ature, fuel concentration—the statistics can be tuned. In the
overdamped limit with γ rescaled to one, it was shown in
Ref. [50] that small τ ≪ 1 adjusts H to an effective
potential

Heff ¼ H þ τ

�
1

2
j∇Hj2 − T∇2H

�
þOðτ2Þ: ð2Þ

For our example in Fig. 1, this (or the unified colored
noise approximation [68,69]) gives a low-T expansion
Heff ¼ ð1þ 2τÞx2 þ 1

4
y4 þ � � �, implying

hy2i
hx2i ≈

4Γð3
4
Þ

Γð1
4
Þ
1þ 2τffiffiffiffi

T
p ð3Þ

for small T and τ {Supplemental Material [61]; Fig. 1(c)}.
This is reflected in the τ ¼ 2 marginal densities [Fig. 1(b)]:
x contracts, while y is unchanged except for a small
bimodality directly analogous to boundary accumulation
of microswimmers [70]. In the opposite limit τ ≫ 1, where
Eq. (2) does not hold, we show in the Supplemental
Material [61] that separation of time scales gives the
asymptotic power law

hy2i
hx2i ≈

27=3Γð5
6
Þ

π1=2

�
τ

T

�
2=3

; ð4Þ

as τ=T grows large [Fig. 1(c)]. These results demonstrate
that active noise is an effective means to actuate an IZM.
In a general mechanical network, the same ideas can be

used to actuate an IZM with many masses moving
in a complex, coordinated fashion. A stable mechanical
network comprises nodes α with rest positions x0α, and
Hookean elastic bonds ðα; βÞ between nodes α and β of
natural lengths lαβ ¼ jx0α − x0βj and stiffnesses kαβ > 0.
When the nodes are perturbed to xα the network has elastic
energy

HðfxαgÞ ¼
1

2

X
ðα;βÞ

kαβðjxα − xβj − lαβÞ2;

which is minimized if (but not always only if) xα ¼ x0α.
Node α then feels an elastic force Fα ¼ −∇αH, where we
notate ∇α ≡ ∂=∂xα. Large real-world systems also possess
dissipation, which we include as a linear friction force γ _xα.
In general, dissipation within bonds [1] could also be
included as forces ∝ _xα − _xβ giving a nondiagonal friction
matrix [71]. We further restrict to two dimensions, and
assume all nodes are identical, adopting units in which
node masses are one and other constants are scaled by a
characteristic stiffness and length (Supplemental Material
[61]). Finally, we pin boundary nodes (Figs. 2 and 3) or
particular interior nodes (Fig. 4) to eliminate rigid body
translations and rotation.
Without any actuation, the mobile nodes obey passive

force balance, namely ẍα ¼ −∇αH − γ _xα. Consider a small
perturbation xα ¼ x0α þ εα of the rest state, and let e
be the vector obtained by flattening εα. To first order,
e obeys ëi ¼ −

P
j Dijej − γ _ei, where the Hessian Dij ¼

∂i∂jHðx0Þ is the dynamical matrix [11]. The orthonormal
eigenvectors fvkg ofDij give the fundamental modes of the
elastic network, whose non-negative eigenvalues fω2

kg
determine if each mode is an HM (ω2

k > 0) or a ZM
(ω2

k ¼ 0). These then form a basis for configurations xα.
Writing ckðtÞ for the component of mode k at time t, given
by dotting the flattened xαðtÞ with vk, we define the

(a)

(b)

(c)

FIG. 1. Zero mode actuation in a bead–spring model. (a) Single
mass at offset ðx; yÞ, with HM in x and IZM in y [38].
(b) Comparison of T ¼ 0.01 exact marginal densities of x and
y at τ ¼ 0 (black) with τ ¼ 2 densities from simulation (blue) and
approximated from Eqs. (1) and (2) (red dashed). Histogram for
τ ¼ 2 from 50 000 samples, others by quadrature (Supplemental
Material [61]). (c) Variance ratio rðτÞ ¼ hy2i=hx2i from simu-
lations (markers) with approximations for small τ (solid lines)
and large τ (dashed lines) from Eqs. (3) and (4): 5000 samples
per marker; 95% CIs smaller than markers (Supplemental
Material [61]).
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amplitude of mode k to be the time average of its squared
coefficient, hckðtÞ2i. Our goal is to show that the ampli-
tudes of ZMs can be selectively actuated in suitably
designed networks.
When a network is actuated by active forces on its nodes,

its dynamics depends on both its structure and the type of
activity. The positions xα obey the general actuated dynamics

ẍα ¼ −∇αH − γ _xα þ Fαð_xα; tÞ; ð5Þ

where Fα represents the actuation process. For this process
we will consider not only the thermal and correlated active
bath processes exemplified above, but also strong self-
propulsive activity through internal energy depot actuation.
These incorporate increasing levels of nonequilibrium
dynamics, which progressively actuate infinitesimal and
finite zero modes.
Generalizing the singlemass example above, amechanical

network driven by Ornstein-Uhlenbeck noise can be for-
mulated with an extra vector ξα for each node [50,70,72].
These follow

τ_ξα ¼ −ξα þ ηα ð6Þ

for independent Gaussian noise processes fηαig of variances
2γT. We set Fα ¼ ξα, giving actuation forces correlated as
hξαiðtÞξβjðt0Þi ¼ δαβδijðγT=τÞe−jt−t0j=τ. The limit τ → 0 then
gives thermal noise. We also again take the overdamped
limit, appropriate for immersion in an active matter bath.
After rescaling to set γ to 1, this gives first-order dynamics

_xα ¼ −∇αH þ ξα; ð7Þ

which are subject to Eq. (6). Varying τ while holding T fixed
then probes the effect of increasing activity-driven correla-
tions at constant actuation intensity hξαið0ÞξβjðtÞi.

For a mechanical network designed to have a nontrivial
isolated IZM {Fig. 2(a); Supplemental Material [61]},
correlated noise highlights the IZM and suppresses fluc-
tuations at other nodes. Numerical integration of Eq. (7)
shows that, while thermal noise (τ ¼ 0) actuates the IZM
with significant surrounding fluctuations {Fig. 2(b);
Supplemental Material Video 1 [61]}, an active process
with τ > 0 damps HM fluctuations relative to those of the
IZM {Fig. 2(b); Supplemental Material Video 2 [61]}.
This is confirmed in the mode amplitudes hc2ki, shown in
Fig. 2(c): the IZM amplitude remains at its τ ¼ 0 level,
while HMs decay as τ increases. Two further examples
showing IZM preservation and HM suppression are given
in the Supplemental Material [61]. The same suppression is
not guaranteed if the ZM contains a low-coordination node
with bistability in its position (Supplemental Material [61]),
since the fluctuation basis depends on the state of the
bistable node, but this can typically be avoided in design.
Even without correlation, persistent low-temperature

ZM-HM coupling enhances mode amplitudes and causes
naïve equipartition to fail. In a system comprising only
HMs ui of frequencies ωi, two-mode interactions are
diagonalized away and the lowest-order terms remaining
are at best third order. For low temperatures T ≪ 1,
interactions can thus be neglected relative to harmonic
energies u2i and simple equipartition of independent modes
hu2i i ≈ T=ω2

i is a good amplitude estimate. However, with a
quartic ZM v present, there are three types of lowest-order
term in T ≪ 1: the independent mode energies v4 and u2i ,
and ZM-HM interactions uiv2. Interactions contribute an
effective repulsive quartic potential on the ZM, causing its
amplitude hv2i to increase with every additional HM
interaction (Supplemental Material [61]). Moreover, the
HM amplitudes hu2i i are also increased by their interactions
with the ZM (Supplemental Material [61]).
Small- and large-τ asymptotics provide general princi-

ples for the behavior of network modes. When τ ≪ 1,

(a) (b) (c)

FIG. 2. Active noise actuates an IZM while suppressing HMs in a mechanical network (Supplemental Material Videos 1 and 2 [61]).
(a) A network of unit length, unit stiffness springs is designed to contain exactly one IZM (arrows). White nodes are pinned.
(b) Histograms of node positions in highlighted area of (a) when actuated by thermal noise (left) and correlated noise with τ ¼ 10 (right)
of strength T ¼ 10−3. The IZM is more cleanly actuated by correlated noise while HMs are suppressed. (c) Thermal-relative amplitude
hu2i iτ=hu2i iτ¼0 of the 21 lowest eigenvalue modes ui of (a) from numerical integration at 0 ≤ τ ≤ 10, with T ¼ 10−3 fixed to maintain
constant intensity hvαið0ÞvβjðtÞi. The IZM (red) is barely affected, while HMs (blues) diminish. Grey areas are estimated 95% CIs; data
from 20 realizations to t ¼ 2 × 104 with δt ¼ 10−4 at each of 20 values of τ (Supplemental Material [61]).

PHYSICAL REVIEW LETTERS 121, 178001 (2018)

178001-3



computing the effective potential in Eq. (2) [50] for an
arbitrary small-T expansion H ≈

P
i aiu

2
i þ

P
i biuiv

2 þ
Av4 in HMs ui and a quartic IZM v gives new effective
coefficients incorporating τ to leading order (Supplemental
Material [61]). In particular, the stiffnesses ai become
aið1þ 2τaiÞ, showing that weaker modes have a propor-
tionally weaker response to increasing τ, while hv2i is
unchanged. Conversely, as τ → ∞, a scaling analysis
shows that an IZM has amplitude proportional to
ðT=τÞ1=3 while all HMs have amplitude proportional to
(T=τ) (Supplemental Material [61]), generalizing our ear-
lier example. Physical dependencies are clarified by restor-
ing dimensionful parameters, turning T=τ into γT=κ2λ2τ for
typical spring stiffness κ and length λ.
In a real mechanical network, local activity can be

mimicked by the randomization generated through high
frequency shaking. We fabricated a stiff-edged network
designed to contain an isolated IZM [Fig. 3(a)] by connecting
plastic edges with freely rotating joints.We then actuated the
network by mounting it on a baseboard, with fixed edge
nodes, and securing this board to a loudspeaker
(Supplemental Material [61]). The speaker was driven at
49 Hz with 20% Ornstein-Uhlenbeck noise of correlation
time ð1=345Þ s to prevent metastable sticking (Supplemental
Material [61]). The baseboard collisions generated by the
high-frequency shaking randomizes the motion of the IZM,
actuating it throughmotion allowed by slight pliability in the
pin joints {Fig. 3(b) and Supplemental Material Video 3
[61]}. The effective activity, and so the relative actuation of
the IZM and HMs, can be controlled by changing the
actuation frequency (Supplemental Material [61]). Thus
even elementary actuation strategies can be of practical
use for IZM mobilization.
We now turn to a stronger form of activity. If the masses

themselves are motile, able to convert chemical energy to
kinetic energy, an effective model is to introduce what

amounts to a negative frictional response at low speeds
[56,57]. Appealing to expansion techniques, as in the
Toner-Tu model [73], we use simple Rayleigh activity
[71] with a velocity-dependent propulsive force

Fα ¼ γfð1 − j_xαj2=v2Þ_xα; ð8Þ

where γf sets the force strength and v is a natural speed in
the absence of friction. The overall effective friction force
can then be viewed as γ _xα − Fα ≡ fðj_xαjÞ_xα with effective
friction coefficient fðuÞ ¼ γ − γf þ γfu2=v2. Provided that
γ0 ≡ γ − γf < 0, this gives a natural speed v0 ¼
vjγ0=γfj1=2 below which fðuÞ < 0. The quiescent state is
then rendered unstable: to linear order, a perturbation of any
eigenmode grows at least as fast as ejγ0=2jt (Supplemental
Material [61]). Nonlinear effects bound this growth, giving
oscillatory trajectories for constrained systems [56].
Under Rayleigh actuation, deviations in the ZM domi-

nate those in the HM at small v0, as for correlated noise,
with extra oscillatory structure in time. Take once more the
example in Fig. 1. At small γ0, the leading order behavior is
a conservative oscillator ẍ ¼ −∇H whose amplitude

(a) (b)

FIG. 3. Shaking actuates the IZM of a stiff mechanical network
(Supplemental Material Video 3 [61]). (a) Photograph of network
with isolated IZM (arrows) constructed from plastic. Joints are
freely rotating pins, with boundary nodes fixed in position.
(b) Actuating the network by high frequency shaking mobilizes
the IZM, shown by node positional histograms for the subregion
indicated in (a) computed by particle tracking over 14 min with
distances rescaled by mean edge length. (See Supplemental
Material [61] for experimental methods.)

(a)

(b)

FIG. 4. Self-propulsive activity spontaneously mobilizes a
complex mechanism (Supplemental Material Video 5 [61]).
(a) Mechanical SSH model [11,27], which has a periodic
mechanism comprising progressive flipping of the masses from
right to left and back again. Black nodes are fixed, blue nodes are
mobile. (b) Endowing a 21-node chain with self-propulsive
activity spontaneously mobilizes the mechanism. The progres-
sion speed depends on the propulsion v0, seen through the time-
dependent offsets Δxi of mobile nodes from their pinning points.
All bonds of strength k ¼ 10 with γ0 ¼ 1, integrated at δt ¼ 10−5

from initial random perturbation.
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is set by kinetic-to-potential energy balance v20 ∼H
(Supplemental Material [61]). The ZM-HM variance ratio
therefore scales as hy2i=hx2i ∼ 1=v0, which diverges as
v0 → 0. A similar divergence occurs in the “overdamped”
case γ0 ≫ 1. This same suppression of HMs persists in
more complex networks (Supplemental Material [61];
Supplemental Material Video 4 [61]).
Beyond IZMs, self-propulsion distinguishes itself from

an active bath in its ability to fully mobilize free-moving
mechanisms [36] even in topologically complex cases. For
a node tethered to just one fixed point, invariance means
that the dynamics of the rotation angle θ has no elastic term.
The node therefore accelerates and sustains an angular
velocity ∼v0 in the finite mechanism. This principle
generalizes to intricate mechanisms of large mechanical
networks. Recently, a mechanical chain inspired by the
SSH model of polyacetylene [Fig. 4(a)] has emerged as a
rich source of topological phenomena [11,27]. This chain
possesses a ZM localized at the boundary [11], which gives
rise to a finite mechanism manifesting as a domain
boundary propagating along the chain [27]. Ordinarily,
to begin propagating an external energy input is needed,
either by a manual “kick” of the end nodes or by a global
force field. But persistent propagation is difficult: motion
by a “kick” will inevitably slow and stop due to dissipation,
while an external field needs regular adjustment to keep the
defect moving between the two ends of the finite chain.
Endowing each node with active propulsion spontaneously
actuates the ZM, mobilizing the boundary and causing a
domain wall soliton to propagate autonomously along the
chain {Fig. 4(b); Supplemental Material Video 5 [61]}.
While under passive dynamics the propagation speed of the
topological soliton is set by the initial kinetic energy or the
external force strength, here this is controlled by v0, the
effective self-propulsive speed [Fig. 4(b)]. The defect can
propagate cleanly for multiple cycles up and down the
chain, with occasional stalls or reversals caused by the
complex interactions of the fluctuating active nodes
(Supplemental Material [61]).
To conclude, we have shown that both nonequilibrium

active baths and intrinsic self-propulsion can actuate infini-
tesimal and finite zeromodes ofmechanical networks. Rapid
progress in developing artificial active systems [58,66]
suggests practical routes to engineer active mechanical
networks exhibiting fine-tuned fluctuation spectra or even
complex response phenomena, such as nonreciprocity
[23,74] enabled by asymmetric nonlinear zero modes and
nonequilibrium steady state statistics. These networks could
be used to perform complex mechanical tasks, such as
enhancing transport of transiently bound colloids, or to
extract work from an active medium [59] by attaching
magnetic beads to drive a miniature dynamo, for example.
In general, we expect that any Goldstone mode of a complex
mechanical system can be selectively mobilized by non-
equilibrium activity of this kind [51].
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