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SINGLE MASS

Low temperature expansion

Here, we evaluate the low temperature expansion of
the energy

H(x, y) = 1
2

[
(|(1− x, y)| − 1)2 + (|(1 + x, y)| − 1)2

]
corresponding to the simple bead-spring model in Fig. 1
of the main text.

To lowest order in x and y, the non-interacting terms
in the expansion H(x, y) = x2+ 1

4y
4+ · · · imply scalings

x ∼ T 1/2, y ∼ T 1/4. Let x = T 1/2u and y = T 1/4v.
Then, expanding H in powers of T 1/2, write

T−1H(x, y) = h0(u, v) + T 1/2h1(u, v) +O(T ),

where

h0(u, v) = u2 + 1
4v

4, h1(u, v) = −u2v2 − 1
8v

6.

We seek an expansion in T for the moment

⟨xmyn⟩ =
∫∞
−∞

∫∞
−∞ xmyne−H/T dx dy∫∞

−∞
∫∞
−∞ e−H/T dx dy

.

First, consider the partition function Z in the denomina-
tor. Changing to u and v, this reads

Z = T 3/4

∫∫
e−h0(u,v)e−T 1/2h1(u,v)+O(T ) du dv. (S1)

Define the integral

I[f(u, v)] =

∫∫
f(u, v)e−h0(u,v) du dv.

Since T ≪ 1, the leading exponent in Eq. (S1) decays
much faster than any others. Thus Z can be approxi-
mated by expanding e−T 1/2h1+O(T ) = 1−T 1/2h1+O(T )
to obtain

Z = T 3/4
{
I[1]− T 1/2I[h1] +O(T )

}
.

An identical derivation gives∫∫
xmyne−H/T dx dy

= T 3/4+m/2+n/4
{
I[umvn]− T 1/2I[umvnh1] +O(T )

}
.

We can now assemble ⟨xmyn⟩. The above implies

T−m/2−n/4⟨xmyn⟩ = I[umvn]− T 1/2I[umvnh1] +O(T )

I[1]− T 1/2I[h1] +O(T )
.

Let J [f ] = I[f ]/I[1]. Expanding once more in T gives
the general result

T−m/2−n/4⟨xmyn⟩
= J [umvn]− T 1/2 {J [umvnh1]− J [umvn]J [h1]}+O(T ).

Thus the expansion amounts to the moment in the bare
non-interacting Hamiltonian H0 = x2+ 1

4y
4 corrected by

its covariance with the strongest interactions.
Particular cases may be computed by evaluating the

integrals. This can be done symbolically for general m,n;
the particular cases of ⟨x2⟩ and ⟨y2⟩ read

⟨x2⟩ = 1

2
T + ρT 3/2 +O(T 2),

⟨y2⟩ = 2ρT 1/2 +

{
9

8
− 7ρ2

2

}
T +O(T 3/2),

with ρ = Γ(3/4)/Γ(1/4) ≈ 0.34.

Correlated noise: small τ

Upon introducing exponentially correlated noise gener-
ated by independent Ornstein–Uhlenbeck processes, the
statistical distribution of the bead changes. We specialise
to the overdamped limit, and rescale time to set γ = 1.
Through an expansion in the correlation time τ , Ref. [1]
shows that the mass follows an effective potential

Heff = H + τ
[
1
2 |∇H|2 − T∇2H

]
+O(τ2). (S2)

For the single bead, the full potential H(x, y) can be sub-
stituted and moments of Heff numerically evaluated, as
shown in Fig. 1 of the main text with moments evaluated
by quadrature in Mathematica.

To see the essential behaviour, we use expansion tech-
niques at low temperature and small τ . When T ≪ 1,
the scaling x ∼ T 1/2, y ∼ T 1/4 still holds provided τ is
small. Given this, the leading order terms read

Heff = (const) + (1 + 2τ)x2 +
1

4
y4 + · · ·
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Thus the base effect of τ is to tighten the stiffness in x
but leave y unchanged. This leading-order behaviour can
also be captured by the unified coloured noise approxi-
mation [2, 3].

Provided the additional T factor in Heff is carefully
accounted for, the same low-temperature expansion as
in the thermal case above can be applied. Omitting the
irrelevant constant, Heff has expansion terms

h0(u, v) = (1 + 2τ)u2 + 1
4v

4,

h1(u, v) = −(1 + 4τ)u2v2 − ( 18 − 1
2τ)v

6 − τv2.

Note the emergent v2 term at non-zero τ in h1, which
will act to confine fluctuations in y as the temperature in-
creases. Performing the integrations and expanding in τ
eventually gives the leading order dependence of the vari-
ance ratio as

⟨y2⟩
⟨x2⟩

= 4ρ(1 + 2τ)T−1/2

+ 9
4 − 15ρ2 −

(
50ρ2 − 7

2

)
τ +O(T 1/2).

Recasting this as a series first in τ , namely

⟨y2⟩
⟨x2⟩

= 4ρT−1/2 + 9
4 − 15ρ2

+
(
8ρT−1/2 − 50ρ2 + 7

2

)
τ + · · ·

reveals the temperature-dependent effect of correlation.

Correlated noise: large τ

In the limit of large τ , we can appeal to separation of
equilibration time scales to derive an approximate distri-
bution for the position x = (x, y).

In the overdamped limit, as before, x obeys

ẋ = −∇H(x) + ξ, (S3)
τ ξ̇ = −ξ + η. (S4)

First, Eq. (S4) implies that the stationary distribution of
ξ is normal, with p.d.f. pξ(ξ) ∝ e−τ |ξ|2/2T . Now, when
τ is large, x equilibrates much faster than ξ. Thus given
the distribution of ξ we can approximate that of x by
assuming ẋ ≈ 0 on time scales comparable with τ . Thus
Eq. (S3) gives the relationship ξ ≈ ∇H(x) between ξ
and x. Given pξ, we can therefore approximate the p.d.f.
px(x) of x through the inversion formula

px(x) = ||∇∇H|| pξ(∇H(x))

∝ ||∇∇H|| e−τ |∇H(x)|2/2T , (S5)

where ||∇∇H|| denotes the absolute value of the deter-
minant of the Hessian ∇∇H (that is, the Jacobian of
the transformation by ∇H).

For τ/T ≫ 1 we can, like before, take an expansion to
approximate moments of this distribution. Provided one
accounts for the prefactor of the exponential, moments of
px are related to moments of the Boltzmann distribution
with effective potential G(x) = 1

2 |∇H(x)|2 and effec-
tive temperature T ′ = T/τ , since px ∝ ||∇∇H||e−G/T ′ .
Now, G has leading non-interacting terms G = 2x2 +
1
2y

6 + · · · implying scalings x ∼ T ′1/2 and y ∼ T ′1/6 (cf.
the small-τ scalings x ∼ T 1/2 and y ∼ T 1/4). Following
the same process as the low temperature expansion, by
substituting for x = T ′1/2u and y = T ′1/6v and expand-
ing in powers of T ′1/3 moments can be approximated as
an expansion in T ′. For conciseness we just compute the
leading order here. We have

||∇∇H||e−G/T ′
=
[
6v2T ′1/3 +O(β−2/3)

]
e−2u2−v6/2,

implying∫∫
xmynpx(x) dx dy

≈ 6T ′2/3+m/2+n/6

∫∫
umv2+ne−2u2−v6/2 du dv.

Thus the normalisation Z for the p.d.f. ||∇∇H||e−G/T ′

is

Z ≈ 6T ′2/3
∫∫

v2e−2u2−v6/2 du dv = 2πT ′2/3

and the variances are

⟨x2⟩ ≈ 6T ′5/3

Z

∫∫
u2v2e−2u2−v6/2 du dv =

T ′

4
,

⟨y2⟩ ≈ 6T ′

Z

∫∫
v4e−2u2−v6/2 du dv =

21/3Γ(5/6)

π1/2
T ′1/3.

To lowest order, the variance ratio ⟨y2⟩/⟨x2⟩ for large
τ/T is therefore

⟨y2⟩
⟨x2⟩

≈ 27/3Γ(5/6)

π1/2

( τ
T

)2/3
.

As well as giving the power law for large τ , this shows
that the T -dependence of the variance ratio changes from
T−1/2 at small τ to T−2/3 at large τ . This is driven by
the change in form of G compared to H: the prefac-
tor ||∇∇H|| does not affect the dominant scaling of the
moments, so they scale with T as they would in the po-
tential G.

NETWORKS: NON-DIMENSIONALISATION

The full dimensional equations of motion read

mẍα = − ∂H

∂xα
− γẋα + Fα(ẋα; t),



3

with energy

H({xα}) =
1

2

∑
(α,β)

kαβ(|xα − xβ | − ℓαβ)
2.

Let κ and λ be typical scales for the spring moduli kαβ
and rest lengths ℓαβ . Rescale space and time as xα =

λx̃α and t = t̃
√

m/κ, and use primes to denote d/dt̃.
Then

x̃′′
α = − ∂H̃

∂x̃α
− γ̃x̃′

α + F̃α(x̃
′
α; t̃),

with dimensionless energy

H̃({x̃α}) =
1

2

∑
(α,β)

k̃αβ(|x̃α − x̃β | − ℓ̃αβ)
2

and dimensionless parameters

γ̃ = γ/
√
mκ, k̃αβ = kαβ/κ, ℓ̃αβ = ℓαβ/λ.

Note that the particle mass m has been scaled
to unity. The dimensionless forcing function F̃α

relates to the dimensional forcing through F̃α =
(κλ)−1Fα(λ

√
κ/mx̃′

α; t
√
m/κ).

Rescaling of noise

For white noise, Fα = ηα(t) with ⟨ηαi(t)ηβj(t′)⟩ =
2γTδαβδijδ(t − t′). Under our rescaling, this be-
comes another white noise F̃α = η̃α(t̃) correlated as
⟨ηαi(t)ηβj(t′)⟩ = 2γ̃T̃ δαβδijδ(t − t′), with dimensionless
temperature T̃ = T/(κλ2).

For exponentially correlated noise, Fα = ξα(t) with
⟨ξαi(t)ξβj(t′)⟩ = γTδαβδije

−|t−t′|/τ/τ . Under our rescal-
ing, this becomes a process F̃α = ξ̃α(t̃) correlated as
⟨ξ̃αi(t̃)ξ̃βj(t̃′)⟩ = γ̃T̃ δαβδije

−|t̃−t̃′|/τ̃/τ̃ with dimension-
less temperature T̃ = T/(κλ2) and correlation time
τ̃ = τ

√
κ/m. This becomes the white noise process above

in the limit τ̃ → 0.
Active forcing Fα = γf ẋα(1 − |ẋα|2/v2) rescales to

F̃α = γ̃f x̃
′
α(1− |x̃′

α|2/ṽ2) with dimensionless active fric-
tion coefficient γ̃f = γf/

√
κm and target speed ṽ =

λ
√
κ/mv.

NETWORKS: HM–ZM COUPLING

Low temperature expansion

The symmetry of the single-mass example means that
the HM and ZM decouple in the limit T → 0. However,
this is not necessarily the case in general: in a potential
where x2 and y4 both scale with T , interaction terms xy2
will also scale with T . Consider now a system of n + 1

degrees of freedom {x1, . . . , xn, y}, where the n variables
xi are HMs and y is a quartic IZM. In a low temperature
expansion, the potential energy is

H =
∑
i

aix
2
i +

∑
i

bixiy
2 +Ay4 (S6)

at lowest order, where A > 0 and all ai > 0 but each bi
can be of either sign. We will evaluate the amplitudes
⟨y2⟩ and ⟨x2

i ⟩.
To compute ⟨y2⟩, we can split the Boltzmann factor

e−H/T into factors which can be integrated in each coor-
dinate xi sequentially, writing

e−H/T = e−Ay4/T
∏
i

e−(aix
2
i+bixiy

2)/T .

Since ∫
dxi e

−(aix
2
i+bixiy

2)/T = Cie
(b2i /4ai)y

4/T

with Ci =
√
πT/ai, splitting the Boltzmann factor allows

us to reduce the computation to

⟨y2⟩ =
∫
dy y2e−Ay4/T

∏
i Cie

(b2i /4ai)y
4/T∫

dy eAy4/T
∏

i Cie(b
2
i /4ai)y4/T

.

The constant factors cancel and the exponentials com-
bine, giving

⟨y2⟩ =
∫
dy y2e−Ãy4/T∫
dy e−Ãy4/T

= ρ

√
T/Ã,

where

Ã = A−
∑
i

b2i
4ai

and ρ = Γ(3/4)/Γ(1/4) as before. That is, the variance
⟨y2⟩ is simply that of a single degree of freedom in an
effective quartic potential Ãy4. Note that Ã < A: the
HM coupling increases the ZM amplitude.

The computation for ⟨x2
m⟩ is similar, albeit not quite

as clean since the integral in xm must incorporate the x2
m

factor. Using the integral∫
dxmx2

me−(amx2
m+bmxmy2)/T

= Cme(b
2
m/4am)y4/T

(
b2m
4a2m

y4 +
T

2am

)
,

the same approach as for ⟨y2⟩ reduces the computation
to

⟨x2
m⟩ =

∫
dy
(

b2m
4a2

m
y4 + T

2am

)
e−Ãy4/T∫

dy e−Ãy4/T
,
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which is again simply a combination of moments in the
effective potential Ãy4. Thus

⟨x2
m⟩ = T

2am

(
1 +

b2m
8Ãam

)
. (S7)

Observe that ⟨x2
m⟩ is only ever increased by introduc-

ing interactions bm compared to its uncoupled amplitude
T/2am. Thus not only do HM–ZM couplings increase ZM
fluctuations, but they concomitantly increase HM fluc-
tuations above those that would be guessed from naive
equipartition. This effect is illustrated in Fig. S1 for 20
HMs of the network in Fig. 2 of the main text, for which
interaction coefficients were determined by series expan-
sion of the elastic energy in Mathematica.

There is one further effect to be noted. Not only does
coupling increase the second moment ⟨x2

m⟩, but the mean
⟨xm⟩ is displaced from zero by the asymmetry of the cou-
pling. The same techniques again can be used to compute
⟨xm⟩, this time using the integral∫

dxmxme−(amx2
m+bmxmy2)/T

= −Cme(b
2
m/4am)y4/T bm

2am
y2,

giving

⟨xm⟩ = bm
2am

⟨y2⟩ = bm
2am

ρ

√
T/Ã.

Conversely, the ZM is not displaced: symmetry means
⟨y⟩ = 0.

The interaction-driven increase in ⟨x2
m⟩ could poten-

tially be just a side effect of the non-zero mean ⟨xm⟩.
However, combining these results gives the mode vari-
ance as

Var(xm) =
T

2am

(
1 +

(1− 4ρ2)b2m
8Ãam

)
.

Since 1−4ρ2 ≈ 0.54 > 0, the variance is indeed increased
by HM–ZM coupling despite the shifted mean.

Correlated noise: small τ

When weak correlated noise is introduced into a gen-
eral system with multiple HMs coupled to a ZM, its ef-
fect on the ZM can be neglected at low temperatures and
short correlation times. The calculation goes as follows.

Take the same energy form as in Eq. (S6). Follow-
ing Ref. [1] as in the single-mass example, when weak
correlated noise of non-zero correlation time τ ≪ 1 is
introduced the system follows an effective energy given
by Eq. (S2). At low temperature, where x2 ∼ T and
y4 ∼ T , evaluating the gradients and keeping only the
lowest order terms gives a first-order adjusted energy

Heff =
∑
i

a′ix
2
i +

∑
i

b′ixiy
2 +A′y4

Zero mode corrected
Simulation (T=10-3)
Simulation (T=10-4)

A
m

pl
itu

de
 /

 ω
2T

Harmonic modes1 20

1

2

FIG. S1. Deviation from naive equipartition of the first 20
lowest-frequency HMs of the network in Fig. 2 of the main
text. Markers show normalised amplitude ⟨c2i ⟩/ω2

i T numer-
ically evaluated at T = 10−3 (red squares) and T = 10−4

(blue circles) compared to naive equipartition at 1 (dashed
line) and with first-order correction in Eq. (S7) for interac-
tions with the ZM (black cross). Error bars are estimated 95%
confidence intervals. Interaction coefficients were determined
by series expansion of the elastic energy in Mathematica.

where the τ -adjusted coefficients read

a′i = ai(1 + 2τai),

A′ = A+ 1
2τ
∑
i

b2i ,

b′i = bi(1 + 2τai).

It is clear that correlation τ > 0 strengthens all couplings:
a′i > ai, A′ > A and |b′i| > |bi|.

The approximate ZM amplitude ⟨y2⟩ is given by sub-
stituting these adjusted couplings into the formulae com-
puted above. But, on computing the coupling-adjusted
ZM amplitude

Ã′ = A′ −
∑
i

b′i
2

4a′i
,

it transpires that Ã′ = Ã. Since only this and T deter-
mine ⟨y2⟩, to first order in τ , the effect of correlations
on the HMs is precisely compensated by its effect on the
coupling terms to leave the ZM amplitude unchanged,
that is, ⟨y2⟩ = ⟨y2⟩τ=0 for τ ≪ 1.

Correlated noise: large τ

At large τ , the same timescale separation arguments
as for the single bead can be used to derive asymptotic
scalings for mode amplitudes in the overdamped limit.
We sketch here the basic argument.

Once again take the same energy form as in Eq. (S6),
this time appealing to a low T ′ = T/τ expansion. When
τ is large, the mode degrees of freedom xi and y equili-
brate with the coloured noise much faster than the noise
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changes. Equation (S5) then gives the effective p.d.f. for
the modes. In this distribution, the scaling of the modes
is driven by the exponential factor e−G/T ′ with potential
G(x1, . . . , xn, y) =

1
2 |∇H|2, where

G =
∑
i

1
2

(
2aixi + biy

2
)2

+ 1
2y

2

(∑
i

2bixi + 4Ay2

)2

.

From a naive look at G one might infer that xi ∼ T ′1/2

and y ∼ T ′1/4 (provided at least one bi ̸= 0) because
of the non-interacting x2

i and y4 terms at lowest order.
However, there is an important subtlety: because the
terms in the first sum, which are the lowest order terms,
can be factorised as written, changing variables from xi

to zi = 2aixi + biy
2 eliminates y from the sum while

only contributing a constant Jacobian factor to moment
integrals. In other words, scalings are governed by the
transformed potential

G̃ =
∑
i

1
2z

2
i + 1

2y
2

(∑
i

bi
ai
(zi − biy

2) + 4Ay2

)2

.

Under G̃, the lowest non-interacting terms are z2i and
y6. Thus y ∼ T ′1/6—not T ′1/4—and zi ∼ T ′1/2, to-
gether implying xi ∼ T ′1/2. Therefore, the amplitudes
⟨x2

i ⟩ and ⟨y2⟩ are asymptotically proportional to (T/τ)
and (T/τ)1/3, respectively.

This argument shows that interaction terms do not af-
fect the asymptotic scaling of the ZM and HMs with T/τ ,
with the ZM dominating HMs by a factor ⟨y2⟩/⟨x2

i ⟩ ∼
τ2/3 for large τ . Exact moments ⟨x2

i ⟩ and ⟨y2⟩ can be for-
mulated by the same process of telescoping xi-integrals as
above, but it is significantly more algebraically unwieldy
due to the more complex exponent and the prefactor of

||∇∇H|| ∝
∑
i

2bixi +

12A−
∏
j

2b2j
aj

 y2

in Eq. (S5). We therefore do not compute the exact mo-
ment formulae here.

NETWORKS: FURTHER EXAMPLES

In Fig. 2 of the main text, a network with a single IZM
is used to exemplify actuation by active correlated noise.
In Fig. S2 we extend this to large correlation τ = 200
and add two further examples displaying the same τ -
dependent mode amplitude behaviour of HM suppresion
and ZM preservation. At long correlation times the am-
plitude asymptotics derived above for HMs (⟨x2

i ⟩ ∼ τ−1)
and the ZM (⟨y2⟩ ∼ τ−1/3) gradually take hold. Some
modes are well into the long-τ regime by τ = 200 while
others are slower to approach it due to stronger higher-
order terms.

Conversely, Fig. S3 shows that under-coordinated
nodes can induce bistability in the structure, adversely
affecting the mode statistics. In particular, a 2-
coordinated node participating in the shown IZM has two
equal-energy locations, meaning that bistable state tran-
sitions are easily triggered by the ZM actuation. This
can adversely affect mode statistics if not eliminated at
design time. In this case, though, the second stable loca-
tion of the node overlaps with another, meaning that in-
corporating repulsive interactions between masses would
lessen or eliminate the problem.

(c) (d)

(f)(e)

(a) (b)

1021 correlation time τ

re
la

tiv
e 

am
pl

itu
de

1

10-3

∝τ-1

∝τ-1/3

∝τ-1

∝τ-1/3

1021 correlation time τ
re

la
tiv

e 
am

pl
itu

de

1

10-3

1021 correlation time τ

re
la

tiv
e 

am
pl

itu
de

1

10-3

∝τ-1

∝τ-1/3

FIG. S2. Three examples of IZM actuation by correlated
noise between τ = 0.5 and τ = 200. (a,c,e) Networks each
with a single IZM (magenta) and pinned boundaries, with
(a) as in Fig. 2 of the main text. (b,d,f) Thermal-relative
mode amplitudes ⟨u2

i ⟩τ/⟨u2
i ⟩τ=0 for the 21 lowest-eigenvalue

modes of the networks in (a,c,e), on a log–log scale, with
ZMs the uppermost red lines. Grey regions are approximate
95% confidence intervals; data computed from 20 independent
realisations up to t = 2 × 104 with δt = 10−4 at values of τ
between 0.5 and 200 indicated by points (see Computational
Methods). Data in (a) is a superset of that of the main text
Fig. 2(c), focussing here on large-τ behaviour. Shown gradient
lines (dashed grey) are large-τ asymptotic predictions for the
ZM (∝ τ1/3) and HMs (∝ τ).
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SELF-PROPULSIVE RAYLEIGH ACTIVITY

A mechanical network with Rayleigh activity has equa-
tions of motion

ẍα = −∇αH − γẋα + γf (1− |ẋα|2/v2)ẋα. (S8)

The friction and active forcing can be condensed into a
friction-like term as

ẍα = −∇αH − f(|ẋα|)ẋα,

where f(u) = γ − γf + γfu
2/v2 is the effective friction

coefficient. If f(0) = γ − γf ≡ γ0 < 0, stationary states
have negative effective friction and are unstable, with
friction switching from negative to positive when f(u) =
0 at |u| = v0 ≡

√
|γ0|/γfv. We can rewrite f in terms of

γ0 and v0 as f(u) = γ0(1− u2/v20).

Activation

As in the main text, considering a small perturbation
of the rest state and decomposing into eigenmodes of the
dynamical matrix gives linearised equations of motion in
terms of the small mode amplitudes ck with |ck| ≪ 1.
For linearised Rayleigh friction, this gives

c̈k = −ω2
kck − γ0ċk.

Elementary analysis then shows that, provided γ0 < 0,
solutions eσt have either a real ‘overdamped’ maximal
growth rate maxσk = 1

2 (|γ0|+
√

γ2
0 − 4ω2

k) if |γ0| ≥ 2ωk,
or a complex ‘underdamped’ growth rate with real part
Reσk = |γ0|/2 if |γ0| < 2ωk. Thus in either case, Reσk ≥
|γ0|/2. The largest possible growth rate σk = |γ0| is
achieved for a ZM, where ωk = 0.

p.
d.
f.

0
10

(b)(a)

FIG. S3. Bistability in an IZM–participating node adds com-
plexity to activation spectra. (a) A network with a single
IZM, as before, containing a two-coordinated node whose po-
sition includes another equal-energy minimum by geometric
symmetry. (b) Position histogram for the bistable node with
τ = 6. The node fluctuates into its other minimum, near
which the overall mode spectrum is different. Note that in
this case the bistability could be lessened by including hard-
core repulsions between nodes.

(a)

p.d.f.0 64

(b)

ZM HMs
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FIG. S4. Self-propulsive activity actuates IZMs in an oscilla-
tory fashion (SM Video 4). (a) Per-node position histogram
for the same network region as in Fig. 2b of the main text, but
now actuated through Rayleigh forcing as in Eq. (S8). The
ZM is prominent, while other nodes barely fluctuate. Pa-
rameters are v0 = 0.02, γ0 = 1, and kαβ = 1, integrated at
δt = 10−5. (b) Example time trace over ∆t = 1000 for the in-
stance shown in (a) of mode coefficients ci(t) for the ZM and
the ten lowest-frequency HMs. The ZM shows far stronger
maxima than the HMs, with notable oscillatory behaviour.

Single mass: small γ0

Unless mode k is a mechanism, growth of the mode
will eventually be arrested by the combination of elastic
forces and nonlinear effective friction terms, giving finite-
amplitude oscillations. For the bead–spring example in
the main text, we briefly examine this arrest process for
small γ0.

Formally, approximate solution for small ϵ ≡ |γ0| is
achieved by series expansion x(t) = x0(t) + ϵx1(t) + · · · .
At O(1), the equations of motion imply

ẍ0 = −∇H(x0).

Thus x0 simply corresponds to motion in the potential H,
meaning E0 ≡ 1

2 |ẋ0|2 +H(x0) is conserved.
Now, the range of maximum spatial extent occurs

where ẋ0 ∼ 0. Furthermore, higher-order dynamics set
the velocity scale as |ẋ0| ∼ v0. Therefore, assuming
H(0) = 0 is the energy minimum, conservation of E0

between the origin and maximum extent implies v20 ∼
H(x0) at the boundary. If v0 is small, H can be approx-
imated by its leading order expansion H(x, y) ≈ x2+ 1

4y
4,

meaning y ∼ v
1/2
0 and x ∼ v0. Thus the variance ratio

⟨y2⟩/⟨x2⟩ ∼ 1/v0, and so the zero mode dominates as
v0 → 0, fulfilling the same role as T → 0 in the noise-
driven case. (Indeed even with the same effective 1/

√
T

scaling, since v20 is a kinetic energy scale and so corre-
sponds to T .)

Network IZM actuation

The same simultaneous ZM actuation and HM sup-
pression in networks driven by active correlated noise
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FIG. S5. Active mechanical SSH model as in Fig. 4 of the main text, with a different random perturbation to the initial
conditions and 4× longer time window.

persists with Rayleigh self-propulsive activity, as il-
lustrated in Fig. S4a (see also SM Video 4). The
mode coefficients ci(t) have oscillatory temporal struc-
ture (Fig. S4b), giving potentially useful actuation be-
haviour that can be controlled by varying parameters of
the activity.

Active mechanical SSH soliton

In Fig. 4 of the main text, we show realisations of
the mechanical SSH model with self-propulsive activity
at three different effective propulsion speeds v0, exem-
plifying how activity excites the underlying mechanism
leading to a self-propelled soliton-like domain bound-
ary. While the domain propagates cleanly most of the
time, there are occasional defects visible where the do-
main slows, stalls or reverses because of the complex in-
teractions between the activity-driven oscillatory fluctu-
ations of the nodes (main text Fig. 4b, v0 = 0.1 and
v0 = 0.2). These imperfection phenomena can be seen
in more detail in Fig. S5, where we exhibit a longer-time
run of the same model and parameters as in the main
text with a different random perturbation to the initial
conditions. Stalls and reversals mid-chain are rare, with
the endpoints being, perhaps unsurprisingly, more prone
to imperfection because of the particular complexity of
the mechanism there. We emphasise that this model does
not have any random noise added, beyond an initial per-
turbation; these reversals are the result of complex inter-
actions between the fluctuating self-propelled nodes.

COMPUTATIONAL METHODS

Single bead statistics

High-quality independent position samples for the sin-
gle mass in Fig. 1 of the main text were computed by
integrating the coupled overdamped equations

ẋ = −∇H(x) + ξ, τ ξ̇ = −ξ + η,

with ⟨ηi(t)ηj(t′)⟩ = 2Tδijδ(t− t′), up to a stopping time
t = tstop and taking the endpoint x(t = tstop) as a sam-
ple. Taking a large set of N samples was accelerated by
massively parallel GPU computing to perform each inte-
gration in one GPU thread (NVIDIA Titan X Pascal).

Network design

We design networks containing isolated IZMs by direct
numerical minimisation of the lowest eigenvalue ω2

1 of the
dynamical matrix Dij with respect to the stiffnesses kαβ .
Starting from uniformly random initial stiffnesses on a
triangular lattice and constraining them to 0 ≤ kαβ ≤ 1,
the gradient-based L-BFGS-B algorithm as implemented
in SciPy 1.0 [4] generally converges to a network in which
some of the stiffnesses and ω2

1 are exactly zero, and which
therefore exhibits an IZM. Since IZMs are topological, in-
dependent of the precise values of the nonzero kαβ [5], a
network containing the same IZM is then obtained by re-
moving the zero-stiffness bonds and setting the remaining
stiffnesses to 1.
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Network simulations

All numerical integration for networks was performed
by Euler/Euler–Maruyama integration of the appropri-
ate system of equations. Mode statistics were determined
from M independent trajectories. Each trajectory was
started from equilibrium, integrated over a time 100 and
discarded to randomise initial conditions, and then sam-
pled up to a time t = tmax. The parameters M and tmax
are given in figure captions.

Each trajectory was subsampled at a resolution ∆t = 1
to compute statistics on n = tmax samples. The variance
σ̄2
i of the mean x̄ of a statistic x computed from trajectory

i was estimated through [6, 7],

σ̄2
i =

σ2
i√
n

1− 2

n

⌊
√
n⌋∑

k=1

(n− k)ρi(k)

 ,

where ρi(k) is the normalised naively-estimated autocor-
relation at lag k and the upper truncation at ⌊

√
n⌋ omits

heavily biased autocorrelation estimates that are in prac-
tice expected to be near zero [6]. Per-trajectory errors
are then combined as independent variances to yield the
overall estimated standard error σ̄ of x̄. Approximate
95% intervals are shown in figures as x̄± 1.96σ̄.

EXPERIMENTAL METHODS

The stiff-jointed network in Fig. 3a of the main
text was constructed using flat brackets of dimensions
3.66 cm × 0.75 cm which were laser cut from transparent
acrylic of thickness 1.2mm. For the pin joints connecting
the brackets, 2–56 thread size, 1/2 in long nylon screws
and nuts were used. Where only three or four brack-
ets were jointed together, the joints were strengthened
using nylon washers. The pins corresponding to the out-
ermost nodes were fastened directly to a 9 in diameter
circular plate, laser cut from acrylic of circa 1 cm thick-
ness. The plate was then mounted on top of an Eminence
Speakers Delta-12LFA, 12 in, 500W speaker (Eminence
Speaker LLC, Eminence KY), which was mounted on an
optical table and driven using a Pyle PQA4100 ampli-
fier (Pyle Audio, Brooklyn NY). Video was acquired at
1920 × 1080 pixels resolution and a frame rate of 30Hz
using an Olympus consumer digital camera (Olympus
America Inc., Center Valley PA) at 40mm focal length
mounted on a tripod. The positions of the nodes were
tracked using the trackpy 0.4.1 package [8].

To actuate the network, the speaker was driven by
a signal comprising a carrier frequency and Ornstein–
Uhlenbeck noise with subsecond correlation. In these
experiments, it is the carrier frequency actuation that
is mimicking the active driving, not the added corre-
lated noise, as interactions between the network and the
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FIG. S6. Experimental actuation method affects relative ZM–
HM statistics. (a) Diagram of the experimental network
shown in the main text Fig. 3, with both the ZM and the
lowest-frequency HM shown. (b) Traces of the soft compo-
nent c2, defined in the text, of the node highlighted in (a)
for correlated and uncorrelated additions to 48Hz carrier fre-
quency actuation. The upper adds 15% Ornstein–Uhlenbeck
noise of correlation time (1/350) s while the lower adds 15%
white noise of identical intensity. Short-time correlation is
necessary to keep the network exploring the energy land-
scape. (c,d) Histograms of soft (c) and stiff (d) components
c1 and c2 for two frequenies of actuation, both with 20%
added Ornstein–Uhlenbeck noise of correlation time (1/345) s.
Changing the carrier frequency controls the mode actuation,
with 55Hz giving greater ZM actuation relative to non-ZM
modes compared to 49Hz. Note the 10× larger scale in the
soft component (d) compared to the stiff component (c).

shaken baseboard drive stochastic forcing. The corre-
lated noise here functions instead as a crucial component
to prevent sticking of the network in resonance-related
metastable states, discussed below.

To explore the effect of different forms of drive, we
focus on one particular node which participates in both
the IZM and the lowest-frequency HM (highlighted in
Fig. S6a) in near-perpendicular directions. Given its po-
sitions xi = (xi, yi) at frames i, rescaled such that the
distance between adjacent nodes is 1 in the reference con-
figuration, we compute the covariance matrix Cov(xi, yi).
The orthonormal eigenvectors v1,v2 of the covariance
matrix corresponding to the eigenvalues λ1 < λ2 then
represent the stiff (v1) and soft (v2) perpendicular di-
rections. We then use the stiff and soft components
c1 = x · v1 and c2 = x · v2 as simple representations
of HM-related and ZM-dominated actuation.

Figure S6b shows the importance of short but non-zero
correlation in the noise added to the carrier frequency.
We compare the soft component c2 from experiments us-
ing 48Hz actuation with 15% Ornstein–Uhlenbeck noise



9

of correlation (1/350) s versus 15% white noise of identi-
cal intensity. This exemplifies how correlated noise keeps
the network exploring configuration space, while even
with white noise it quickly sticks in a metastable state.

Changing the carrier frequency, rather than the added
noise, controls the effective activity of the nodes leading
to different positional distributions. Figure S6c,d gives

histograms of the components c1 and c2 for actuation
with carrier frequencies of 49Hz (used in the main text
Fig. 3) and 55Hz plus 20% (1/345) s-correlated Ornstein–
Uhlenbeck noise. The latter tightens in the stiff direction
compared to the former, signifying greater ZM actuation
relative to HMs, while the soft component changes shape
more markedly as a result of the complex interactions of
the network with the shaken baseboard.

∗ Present address: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter,
Woodstock Road, Oxford OX2 6GG, U.K.; Correspondence to: francis.woodhouse@maths.ox.ac.uk

[1] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. van Wijland, Phys. Rev. Lett. 117, 038103 (2016).
[2] P. Jung and P. Hänggi, Phys. Rev. A 35, 4464 (1987).
[3] C. Maggi, U. M. B. Marconi, N. Gnan, and R. Di Leonardo, Sci. Rep. 5, 10742 (2015).
[4] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for Python,” (2001–), [http://www.scipy.org/].
[5] C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).
[6] C. J. Geyer, Stat. Sci. 7, 473 (1992).
[7] T. J. Witt and N. E. Fletcher, Metrologia 47, 616 (2010).
[8] D. B. Allan, T. Caswell, N. C. Keim, and C. M. van der Wel, “trackpy v0.4.1,” (2018),

[https://doi.org/10.5281/zenodo.1226458].


