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Mechanical metamaterials are designed to enable
unique functionalities, but are typically limited by an
initial energy state and require an independent energy
input to function repeatedly. Our study introduces
a theoretical active mechanical metamaterial that
incorporates a biological reaction mechanism to
overcome this key limitation of passive metamaterials.
Our material allows for reversible mechanical signal
transmission, where energy is reintroduced by the
biologically motivated reaction mechanism. By
analysing a coarse-grained continuous analogue
of the discrete model, we find that signals can be
propagated through the material by a travelling
wave. Analysis of the continuum model provides
the region of the parameter space that allows signal
transmission, and reveals similarities with the well-
known FitzHugh–Nagumo system. We also find
explicit formulae that approximate the effect of the
time scale of the reaction mechanism on the signal
transmission speed, which is essential for controlling
the material.

1. Introduction
Mechanical metamaterials are artificially constructed
and have mechanical properties defined by their
structure [1]. Simple metamaterials consist of a one-,
two- or three-dimensional array of elements connected
by links [1–3] that may be elastic [4–7], magnetic
[8,9] or electrostatic [4]. Mechanical metamaterials
are highly tuneable [10–12] and by altering the
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structure of these elements, and the properties of the links, materials have been developed that
selectively transmit signals [13,14], behave as logic gates [5,15] or buckle after the application
of an external stimulus [2]. There are many recent studies that experimentally realize simple
mechanical metamaterials [6,14,16–19]. An advantage of these designs is that they are often well
suited to using three-dimensional printing technology [3,5,16,18,20]; however, a common theme
among existing metamaterials is that they generally require an external source of energy to be
provided in order to power their functions [5,21]. Many existing technologies can be thought
of as static or inactive in the sense that they are limited by a fixed initial energy state, and are
only able to respond to a finite number of stimuli before the manual introduction of external
energy.

Recent mathematical and experimental work has examined the properties of a class of
one-dimensional bistable metamaterials [4,5]. These systems comprise elements, each of which
consists of a mass connected to an external wall by a set of elastic elements that produce a
bistable elastic potential. Individual elements are arranged in a one-dimensional lattice and are
interconnected by linear springs (figure 1a). These elements may be tuned so that the elastic
potential energy function is asymmetric, resulting in both a high and low potential energy stable
configuration for each element (figure 1b). The system can, therefore, be designed so that an
external stimulus, for example the change of a single node from the high to low potential energy
stable state, can trigger a change in element configuration through the entire lattice [5]. This
change is the transmission of a mechanical signal powered by stored elastic potential energy.

A limitation of this mechanical regime is that the system must receive an external energy
input before the transmission of an additional signal [3,5]. Stiffness grading has been shown
to overcome this limitation by exploiting a symmetric potential function [3]; however, these
techniques may not allow the propagation of waves in systems with non-zero damping. The
material in its current state is reset by manually moving each element back into its high potential
energy configuration [5]. Our study introduces a theoretical biologically inspired mechanism that
automatically resets each element to a high potential energy state, allowing the transmission of
further signals. Many recent studies introduce the idea of manipulating biological subsystems
in materials [22–24], or discuss behaviours that arise in active matter systems, where biological
systems exert mechanical forces [25]. Some systems are biologically inspired [21,23,24] where
properties of the metamaterial are designed to mimic a biological phenomenon, and some systems
exploit the properties of biological subsystems to produce new behaviours in the material [22].
One possibility for our mechanism is to exploit actin filaments in eukaryotic cells [26–29] to
convert energy provided to the cells as nutrients through chemical hydrolysis [30] into mechanical
energy which can reset the bistable elements to a high potential energy configuration. The
application of actin filaments in nanotechnology is well studied [28] and their exploitation in
metamaterials has been previously suggested [29,30].

The biological reaction mechanism we introduce is designed to react to changes in the
displacement of individual elements and respond by inducing elastic potential energy back into
each element. Mathematically, the effect of this process is to reset the potential function so that
each element eventually reverts to a high potential energy state, as shown in figure 1b–d. We
present a mathematical characterization of this reaction mechanism and explore how the time
scale of the reaction mechanism affects the ability of the system to transmit signals. We find
that signal transmission through a coarse-grained description of the material takes the form of
a travelling wave. Using a travelling wave model, we find explicit formulae that bound the
parameter space for which signal transmission can occur, and approximate the effect the time
scale of the reaction mechanism has on the signal transmission speed. We lay the foundation
for future work on this system where the metamaterial can be tuned to produce useful new
behaviours. The results we provide quantify the trade-off between the signal transmission speed
and the time scale of the biological response, which are essential for control and tuning of the
material. For clarity, throughout this work, we refer to the system without the reaction mechanism
as the inactive system, and the system that includes the biological reaction mechanism as the active
system.
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Figure 1. (a) Schematic of the one-dimensional metamaterial [5]. Each element (red), of massm, has a natural spacing of�.
Each mass is connected to an external wall by a bistable elastic element (green) and to neighbouring elements by linear elastic
springs (blue). The inset shows both stable states for each element, ui(t)= ±δ where i is the mass index. (b) An example of
bistable potential function (red) and its derivative (blue) for ai = −0.5 and δ = 1 in the inactive model, or the active model
at t = 0. (b–d) The effect of the biological reaction mechanism, which resets the potential function. Note that (d) corresponds
to a reflection of (b) about ui = 0. For each plot, the stable steady states (dashed grey) and unstable steady state (dotted grey)
are shown. (e,f ) Signal propagation through this material showing (e) the displacement of each element, ui(t), and (f ) the
biological reaction, ai(t). The signal was initiated by moving the first element from a displacement of−δ to δ at t = 0, and
was retransmitted by moving the last element from a displacement of δ to−δ at t = 400. We note the original signal could
also be initiated from the right boundary by moving the last element from a displacement of−δ to δ, or indeed anywhere
in the domain. Parameters used are m= 1 g, k = 1 g m s−2, γ = 1 g s−1, � = 0.002 m, δ = 1 m, ε = 0.01/s, η = 2,
v = 1 g/(m2 s2) and N = 101 masses. (Online version in colour.)
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In §2, we present a mathematical model that describes the discrete active mechanical system.
Following this, we take a continuous limit of the discrete model [4] with which we qualitatively
explore the effect of the reaction mechanism on the ability of the system to transmit mechanical
signals. We find evidence of travelling waves in the continuous model, where the wavespeed
corresponds to the signal transmission speed. In §3, we solve for the wavespeed and shape in the
case where the reaction mechanism is excluded. This analysis is then extended to explore the effect
that the reaction mechanism has on the wavespeed and shape by taking a singular perturbation
expansion (§§3a) and applying an energy conservation argument (§§3b). Finally, in §4, we discuss
and summarize our results, and outline future work involving our active metamaterial.

2. Mathematical model
The metamaterial presented by Raney et al. [5] consists of N bistable elements of mass m,
interconnected by N − 1 linear springs of stiffness k; each of the bistable elements is attached
to two external walls by a pair of elastic elements, with a separation of �. A schematic of this
physical system is shown in figure 1a. Denoting the displacement of the ith mass relative to the
mean of its two steady states as ui(t), the state of the discrete system is governed by

0 = m
d2ui

dt2 − k(ui+1 − ui − �) + γ
dui

dt
+ ∂V

∂ui
, i = 1,

0 = m
d2ui

dt2 − k(ui+1 − 2ui + ui−1) + γ
dui

dt
+ ∂V

∂ui
, i = 2, . . . , N − 1

and 0 = m
d2ui

dt2 − k(ui − ui−1 + �) + γ
dui

dt
+ ∂V

∂ui
, i = N,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where γ is a damping parameter and V(ui, ai) describes the potential energy of the bistable
elements that connect each mass to the external wall [4,5].

In this study, we choose V(ui, ai) to be a quartic [4] defined in terms of its derivative,

∂V
∂ui

= v(u2
i − δ2)(ui − ai), (2.2)

where v describes the stiffness of the bistable elements and relates to the size of the energy
gap between high and low potential energy configurations, ui = ±δ are the stable fixed points
of V(ui, ai) and ui = ai ∈ [−δ, δ] is the unstable fixed point which governs the symmetry of V(ui, ai)
(figure 1b). For this choice of potential energy function, ui = sign(ai)δ corresponds to an element
in the high potential energy configuration and ui = −sign(ai)δ corresponds to an element in the
low potential energy configuration (figure 1b).

In our study, we allow the symmetry of the potential function to vary in reaction to changes in
the displacement, ui(t), by allowing ai = ai(t) and enforcing

dai

dt
= ε

(
ui

η
− ai

)
. (2.3)

Physically, ai represents a biological subsystem that receives energy from external sources and
induces it into the material at a rate proportional to ε. The parameter η > 1 determines the extrema
of the reaction parameter so that ai(t) ∈ [−δ/η, δ/η]. This implementation means that if a user
transmits a signal through the material by changing the displacement of a node (figure 1e), and
waits a period of time of O(ε−1) after the signal reaches the end of the domain, all elements
of the system will have reverted to their high potential energy states. This resetting process of
ai(t), and by extension V(ui, ai), is shown for a single element in figure 1b–d, and throughout the
material in figure 1f. The discrete system is similar to other fast–slow bistable systems, such as the
FitzHugh–Nagumo model [31–33]. In this context, we consider that the displacement function,
ui(t), undergoes an excitable excursion in phase space in response to an external stimulus, and
the variable representing the biological response, ai(t), behaves as a linear recovery variable. In



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190146

...........................................................

addition to the results in figure 1e, we reproduce results in the electronic supplementary material,
in the case that the second signal is initiated too early, so propagation cannot occur.

If the length of the material is large relative to the separation of each mass, �, we can describe
the material with a coarse-grained continuous model [34]. To derive a continuous description of
the system described by equation (2.1), we consider a material of fixed length, L = (N − 1)�, and
take the limit N → ∞ so that � → 0. Following this, we define field functions u(x, t) and a(x, t) that
describe ui(t) and ai(t), respectively, for x = (i − 1)� ∈ (0, L). When taking a continuous limit of the
discrete system we require that the macroscopic quantities in the discrete model remain O(1) for
physical reasons [4]. To do this, we replace unit quantities m, v and γ with density quantities,
ρ = m/�, v̂ = v/� and γ̂ = γ /�, respectively, and scale the connecting spring force, k̂ = �k.

Dividing equation (2.1) by � and taking the limit � → 0 results in the continuous model,

0 = ρ
∂2u
∂t2 − k̂

∂2u
∂x2 + γ̂

∂u
∂t

+ v̂(u2 − δ)(u − a) = 0 (2.4)

and

0 = ∂a
∂t

− ε

(
u
η

− a
)

. (2.5)

A no flux boundary condition ∂u/∂x = 0 is applied at x = 0 and x = L.
A key aspect of this study is to investigate the signal transmission speed through the parameter

space, particularly as ε increases. We therefore non-dimensionalize equations (2.4) and (2.5) by
scaling t = Tt̂, x = Xx̂, u = Uû and a = Aâ, where hat notation represents dimensionless variables.
Choosing U = A = δ, T2 = ρ/γ̂ and X2 = k̂T2/ρ gives

0 = ∂2û

∂ t̂2
− ∂2û

∂ x̂2 + ∂û

∂ t̂
+ ν(û2 − 1)

(
û
η

− â
)

(2.6)

and

0 = ∂ â

∂ t̂
− κ

(
û
η

− â
)

, (2.7)

where κ = Tε ≥ 0, ν = v̂δ2ρ/γ̂ 2 > 0, η > 1 and x̂ ∈ (0, L̂). The behaviour of the system can now
be studied through the three-dimensional parameter space (ν, η, κ), where ν > 0 is the relative
strength of the potential function; η > 1 describes the steady-state locations of â(x̂, t̂); and κ ≥ 0 is
the relative time scale of the reaction mechanism. In this non-dimensional regime, the stable states
are located at û = ±1, where the high potential energy state is always given by sign(â).

Previous studies provide evidence to suggest that the transmitted energy is input independent
[35], so we do not expect the initial condition to affect the transmission speed in the centre of the
domain. A signal is initiated in the continuous model using a Heaviside initial condition for the
displacement, where

û(x̂, 0) =
{

1, 0 ≤ x̂ < Q,

−1, Q ≤ x̂ ≤ L̂,
(2.8)

and the biological response is kept as it was before the signal was initiated by setting

â(x̂, 0) = − 1
η

. (2.9)

In figure 2a, numerical solutions to the continuous model show that the transition of the
displacement variable, û(x̂, t̂), is carried by a wave which appears to approach a constant shape
and speed. Figure 2b demonstrates the slow biological response, where â(x̂, t̂) also undergoes a
slow transition in response to changes in û(x̂, t̂). Results in figure 3 illustrate the dependence of
the transmission speed on the time scale of the response, κ . These results indicate a negative
monotonic relationship between κ and the transmission speed. Full details of the numerical
scheme used to solve the continuous model are provided in the electronic supplementary
material.
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Figure 2. Numerical solutions to the non-dimensional continuous model (equations (2.6) and (2.7)) showing (a) the
displacement field, û(x̂, t̂), and (b) the biological reaction, â(x̂, t̂). Parameters used areν = 4,η = 2 andκ = 0.01. The signal
is initiated using the initial condition described by equations (2.8) and (2.9) with Q= 1. (Online version in colour.)
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Figure 3. The solution to the continuous model, equation (2.6), shown as kymographs where colouring represents (a–d) the
displacement function, û(x̂, t̂), and (e–h) the biological response, â(x̂, t̂), for increasing values of κ . Parameter values used are
ν = 4 andη = 2. Each signal is initiated using the initial condition described by equations (2.8) and (2.9) with Q= 1. (Online
version in colour.)

3. Travelling wave model
Figure 2 suggests that signals are propagated through the system by waves which appear to
approach a constant shape and speed. Motivated by this, we now look for a travelling wave
solution to the continuous model by extending the domain to represent a material of infinite
length, so that x̂ ∈ R

+ [3,4,32,33,36–42]. We define the wavespeed, c, and without loss of generality
enforce c > 0 by investigating travelling waves that are initiated at the left boundary and move in
only the positive x̂ direction. In reality, we expect symmetry in these solutions as a travelling wave
may also travel in the negative x̂ direction if the signal is initiated in the centre of the domain.

Substituting travelling wave variables f (z) = û(x̂, t̂) and h(z) = â(x̂, t̂), where z = x̂ − ct̂ ∈ R, into
equations (2.6) and (2.7), and dividing by c2 − 1, gives the travelling wave model,

0 = d2f
dz2 + c

1 − c2
df
dz

− ν

1 − c2 (f 2 − 1)(f − h), f (±∞) = ∓1 (3.1)
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and

0 = dh
dz

+ κ

c

(
f
η

− h
)

, h(∞) = − 1
η

, (3.2)

which, in physical coordinates, corresponds to a wave profile connecting û = −1 to û = 1 as t → ∞.
In figure 3, numerical solutions of the continuous model show that increasing the response

speed κ typically reduces the wavespeed from a maximum which occurs when κ = 0. We,
therefore, denote a fast wave as a travelling wave solution at, or near, κ = 0, and a slow wave as a
travelling wave solution in the limit, or near, c = 0. Removing the active component of the system
from the model by setting κ = 0 (and defining c0 as the corresponding wavespeed) gives

0 = d2f0
dz2 + c0

1 − c2
0

df0
dz

− ν

1 − c2
0

(f 2
0 − 1)

(
f0 + 1

η

)
, f0(±∞) = ∓1 (3.3)

and

0 = dh0

dz
, h0(∞) = − 1

η
, (3.4)

where f0(z) will correspond to the solution to the fast wave. Under certain parameter
transformations, equation (3.3) is analogous to the well-studied bistable equation that arises from
analysis of the FitzHugh–Nagumo model [31–33,38]. The solution of equations (3.3) and (3.4) is
therefore

f0(z) = − tanh (μ0z) (3.5)

and

h0(z) = − 1
η

, (3.6)

where

μ0 =
√

ν2

η2 + ν

2
and c0 =

√
1

(η2/2ν + 1)
. (3.7)

For physically realistic parameter combinations, equation (3.7) suggests that c0 < 1.

(a) Perturbation solution for the fast wave
An exact solution in the limiting case κ = 0 (equation (3.5)) allows the formulation of a
perturbation solution for 0 < κ � 1 [38,39,43]. Figure 4 shows an approximation to the wave
profiles f (z) and h(z) for κ = 0.01. A fast transition region is seen in f (z) around z = 0 (figure 4a),
suggesting behaviour necessitating a singular perturbation analysis [39,43]. For z ∼O(μ−1

0 ),
the solution appears to match a solution for κ = 0, since, at this scale, h(z) is approximately
constant (figure 4b). In figure 4a, we show that h(z) is not constant but rather a slow reaction of
O(κ−1), which transitions h(z) = −1/η to h(z) = 1/η as z → −∞. This observation further suggests
a singular perturbation analysis, since the behaviour of the response mechanism h(z) varies
significantly for 0 < κ � 1 compared with κ = 0.

We propose a three-part perturbation solution about κ = 0 and define independent variables
z ∼O(μ−1

0 ) to correspond to an inner region, and Z = κz for z ∼O(κ−1) to correspond to two outer
regions. These three regions are shown in figure 4a. This regime requires the fast process, which
occurs in the inner region, to be much faster than the slow process, which occurs in the outer
region. That is, we require κ � μ0.

Our aim in looking for a perturbation solution is to determine the effect of small perturbations
in κ on c. To do this, we pose a perturbation expansion for the wavespeed through the entire
domain,

c = c0 + c1κ + O(κ2), (3.8)

where c0 is given by equation (3.7).
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Figure 4. Approximation of the travelling wave profile using a solution to the continuous model for (a) the displacement
function, f (z), and (b) the biological reaction, h(z). Parameters used are ν = 4, η = 2 and κ = 0.01. In (a), the horizontal
axis is scaled to show both outer regions where z ∼ O(κ−1), which is the rate of change of h(z). In (b), the horizontal axis is
scaled to show the inner region where z ∼ O(μ−1

0 ), which is the rate of change of f (z). (Online version in colour.)

In the inner region, we pose a perturbation solution of the form

f (z) = f0(z) + f1(z)κ + O(κ2) (3.9)

and
h(z) = h0(z) + h1(z)κ + O(κ2), (3.10)

where f0(z) and h0(z) correspond to the shape of the fast wave at κ = 0, given by equation (3.5). Full
details of the perturbation solution in the inner region are given in the electronic supplementary
material. In summary, the solution is given by

f (z) = − tanh(μ0z) + f1(z)κ + O(κ2) (3.11)

and

h(z) = − 1
η

+ 1
c0μ0η

(
log(cosh(μ0z)) − μ0z + log(2)

)
κ + O(κ2), (3.12)

where f1(z) and c1 are defined by the solution of a second-order boundary value problem, which
can be solved numerically. Full details of this numerical scheme are given in the electronic
supplementary material. These solutions are shown in figure 5, and the wavespeed correction,
c1, is summarized for various parameter combinations in electronic supplementary material,
table S3.

In the outer region, we denote solutions to the slow system using uppercase variables, F(Z)
and H(Z). We expect the outer solution to apply for Z ∼O(1) ⇒ z ∼O(κ−1) and as z, Z → ∞. In
the outer region, equation (3.1) becomes

0 = κ2 d2F
dZ2 + cκ

1 − c2
dF
dZ

− ν

1 − c2 (F2 − 1)(F − H), F(±∞) = ∓1, (3.13)

which has the solution
F(Z) = −sign(Z). (3.14)

This agrees with the sharp transition region seen at this scale in figure 4a. Substituting
equation (3.14) into equation (3.2) we see that

0 = dH
dZ

− 1
c

(
sign(Z)

η
+ H

)
, H(∞) = − 1

η
. (3.15)
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Full details of the perturbation solution in the outer region are given in the electronic
supplementary material. In summary, the solution to equation (3.15) is given by

H(Z) =

⎧⎪⎪⎨
⎪⎪⎩

1
η

− 2
η

exp
(

Z
c0

)
− 2c1

ηc2
0

Z exp
(

Z
c0

)
κ + O(κ2), Z < 0,

− 1
η

, Z > 0.
(3.16)

Figure 5b–c shows a comparison between solutions for the reaction mechanism in the inner
and outer regions (given by equations (3.11) and (3.16), respectively) and an approximation of
the wave shape formed from the numerical solution to the continuous model. We see an excellent
match between both the continuous model and the perturbation solutions, as well as between the
inner and outer regions of the perturbation solution. These results provide excellent information
about the behaviour of h(z) for 0 < κ � 1, and are particularly important as the behaviour for
0 < κ � 1 varies significantly from the behaviour at κ = 0.

(b) Energy transport
To determine information about the slow wave, and to obtain more information about the fast
wave, we follow Nadkarni et al. [4,41] to derive an integrability condition—that is, a necessary
condition for the existence of a solution with given boundary conditions—to investigate the
transported energy. Multiplying the travelling wave model, given by equation (3.1), by df/dz
and integrating gives

0 =
∫∞

−∞
d2f
dz2

df
dz

dz + c
1 − c2

∫∞

−∞

(
df
dz

)2
dz − ν

1 − c2

∫∞

−∞
(f 2 − 1)(f − h)

df
dz

dz. (3.17)

For a parameter regime where the transition wave exists, the velocity will vanish in the far
field so that f → ∓1 and df/dz → 0 as z → ±∞. Therefore, some components of equation (3.17)
vanish,

∫∞

−∞
d2f
dz2

df
dz

dz =
[

1
2

(
df
dz

)2
]∞

−∞
= 0

and
∫∞

−∞
(f 2 − 1)(f − h)

df
dz

dz = −
∫∞

−∞
df
dz

(f 2 − 1)h dz.
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Figure 6. Approximate numerical solutions to the travelling wave model, formulated from numerical solutions to the
continuous model, for (a) the displacement function, f (z), and (b) the biological reaction, h(z). Results are shown for various
values of the response parameter,κ , with ν = 4 andη = 2. Additionally, (a) shows the exact solutions to the travelling wave
model, equations (3.1) and (3.2), for κ = 0 (black dashed-dot) and κ = κ∗ = 1.6 (black dashed). (Online version in colour.)

Under the assumption |c| �= 1, equation (3.17) becomes an integrability condition,

c
∫∞

−∞

(
df
dz

)2
dz = −ν

∫∞

−∞
df
dz

(f 2 − 1)h dz. (3.18)

It is useful to note that, for f = − tanh(σz), for some σ , which occurs as κ → 0 with σ = μ0,

(f 2 − 1)
df
dz

h ∝ sech4(σz)h. (3.19)

This suggests that only the component of h(z) near z = 0 is important in gaining any
approximation from the integrability condition, provided f (z) has the form of a hyperbolic tangent
function. Since a travelling wave connecting f (z) = 1 to f (z) = −1 as z → ∞ will always have a
sigmoidal form (figure 6), we expect this observation to apply for all regions of the parameter
space where a travelling wave exists.

In the inactive model, where κ = 0, Nadkarni et al. [4] show that the integrability condition
reduces to

Ek = c�V
2γ

, (3.20)

where Ek represents the total kinetic energy per density transported by the transition wave, and
�V represents an energy gap or difference in the potential energy between the high and the low
potential energy states. This result can be used to find an upper bound for c for κ > 0: since |h(t)| ≤
1/η and �V is a monotonically decreasing function of h(t), the available kinetic energy in the
system is always bounded above by that which occurs when h(t) ≡ 1/η, which is the case for
κ = 0. This suggests that c(κ) ≤ c0 < 1 and substantiates numerical evidence seen in figure 3, which
suggests a decreasing monotonic relationship between c and κ .

In the following subsections, we apply the integrability condition to obtain approximations
to c(κ) while holding ν and η constant. We also find the region of the parameter space that
allows signal transmission. The advantage of these approximations is that they avoid numerical
solutions to the continuous model to approximate the wavespeed. Numerical solutions to this
model are not computationally inexpensive and it is generally difficult to obtain and verify the
results.
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(i) Energy transport in the fast wave

For κ � 1, it is reasonable to assume that f ≈ − tanh(μz), where μ depends on κ and μ → μ0
as κ → 0. By assuming f (z) has a similar form to f0(z) for κ � 1, it is reasonable to use the
perturbation solution (equation (3.12)) as an approximation for h(z). Since the integrability
condition (equation (3.18)) depends only on the component of h(z) near z = 0, we use only
equation (3.12). Allowing μ0 = μ(0) and c0 = c(0), where μ = μ(κ) and c = c(κ) depend on κ , we
assume that

h(z) ≈ − 1
η

+ κ

cμη

(
log(cosh(μz)) − μz + log(2)

)
, κ � 1. (3.21)

Equation (3.21) corresponds to the smoothed piecewise-defined function where growth is equal
to 2κ/(cη) for z < 0, and zero for z > 0. This function corresponds exactly to an O(1) approximation
to h(z), which uses f (z) = −sign(z). Substituting equation (3.21) into the integrability condition
(equation (3.18)) provides the relationship

4c2μ2

3
= 2ν(6cμ − 5κ)

9η
. (3.22)

This result does not allow c and μ to be determined independently, so we consider a far-field
expansion of the travelling wave [36], that is, an expansion about φ ≈ 0, where φ = e−μz,

f (z) = − tanh(μz) = e−2μz − 1
e−2μz + 1

= φ2 − 1
φ2 + 1

= −1 + 2φ2 + O(φ4). (3.23)

Substituting φ = e−μz and equation (3.23) into the travelling wave equation for h(z) (equation (3.2))
gives

f (z) ∼ −1 + 2e−2μz, |z−1| � 1

and h(z) ∼ − 1
η

+ 2κ

η(κ + 2cμ)
e−2μz, |z−1| � 1.

⎫⎪⎬
⎪⎭ (3.24)

Substituting equation (3.24) into equation (3.1) provides a far-field relationship,

0 = ν

η
− cμ − ν + 2μ2(1 − c2). (3.25)

To obtain a useful analytical expression for c and μ, we pose a perturbation solution to
equations (3.22) and (3.25) around κ = 0, such that

c = c0 + c̃1κ + O(κ2) (3.26)

and

μ = μ0 + μ̃1κ + O(κ2), (3.27)

where c0 and μ0 are given by equation (3.7). We note that c̃1 approximates c1, the gradient of c(κ)
at κ = 0, where c1 is defined exactly by the solution of the perturbation problem. Substitution into
equations (3.22) and (3.25) gives

c̃1 = 5ν
(
4c2

0μ0 + c0 − 4μ0
)

24μ2
0 (2c0ημ0 − ν)

. (3.28)

We compare this estimate of c1, which is calculated numerically by solving the boundary value
problem that comes from the singular perturbation expansion, with that estimated from the
continuous model in electronic supplementary material, table S3. In figure 7, we show that, for
κ � 1,

c(κ) ∼ c0 + c̃1κ (3.29)

matches numerical results for c(κ).
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Figure 7. Comparison between the wavespeed as a function of κ , from the continuous model (circles), with: the analytical
expression at κ = 0, given by equation (3.7) (diamonds); the analytical expression for κ∗ at c = 0, given by equation (3.37)
(squares); the analytical approximation givenby equation (3.29),which applies forκ � 1 (dashed-dotted curve); the analytical
approximation given by equation (3.41), which applies for c � 1 (dashed curve); the combined approximation given by
equation (3.42), which applies everywhere (dotted curve); and the approximation given by equation (3.44), which applies
everywhere (solid curve). (Online version in colour.)

(ii) Energy transport in the slow wave

We denote f∗(z) and h∗(z) as the shape of the slow wave, which occurs as c → 0 and κ → κ∗, where
κ∗ is yet to be determined. In addition, we expect the curve c(κ) to be perpendicular to the κ

axis at κ∗ to maintain continuity in the symmetry of the problem where solutions with a negative
wavespeed are equally valid. To determine a governing equation for the slow wave, we take
c → 0, so that equations (3.1) and (3.2) become

0 = d2f∗
dz2 − ν

(
1 − 1

η

)
f∗(f 2

∗ − 1), f∗(±∞) = ∓1 (3.30)

and

0 = f∗
η

− h∗, (3.31)

which have the analytical solution

f∗(z) = − tanh (μ∗z)

and h∗(z) = − 1
η

tanh (μ∗z) ,

⎫⎪⎬
⎪⎭ (3.32)

where

μ∗ =
√

ν

2

(
1 − 1

η

)
. (3.33)
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Direct substitution of f∗(z) and h∗(z) into the integrability condition (equation (3.18)) causes all
terms to vanish, so higher order behaviour of O(c) as c → 0 is important. To allow for this, we note
that equation (3.2) can be solved, for all κ , to give

h(z) = κ

cη

∫∞

z
f (s) exp

[κ

c
(z − s)

]
ds. (3.34)

Equation (3.34) shows that h(z) depends on the product of f (s) and a function that decays rapidly
as z moves away from s. Expanding f (s) in a Taylor series about z gives

h(z) ≈ κ

cη

∫∞

z

[ ∞∑
n=0

(s − z)n

n!
dnf
dzn

]
exp

(κ

c
(z − s)

)
ds = 1

η

∞∑
n=0

cn

κn
dnf
dzn . (3.35)

Assuming that f ∼ tanh(μ(κ)z) provided c � 1, where μ(κ∗) = μ∗, and truncating the infinite
series given by equation (3.35) after n = 3, the integrability condition (equation (3.18)) gives the
relationship

4κ3

3
= 16ν

(
7κ2 − 8c2μ2)

105η
. (3.36)

For η and ν fixed, c → 0 only as κ → κ∗. Substituting c = 0 into equation (3.36) gives

κ∗ = 4
5

ν

η
. (3.37)

Under the assumption that c(κ) is monotonically decreasing, the result in equation (3.37)
provides an analytical expression for the region of the parameter space where we expect
signal transmission. In figure 7, we show that this expression matches the numerical results.
Interestingly, equation (3.37) depends only on the ratio of the other parameters, ν/η. The scales of
the horizontal axes for figure pairs figure 7a,c and b,d have been chosen to highlight this.

To gain information about the shape of c(κ) near κ = 0, we pose a perturbation solution around
κ = κ∗ to the system governed by equation (3.36) and the far-field relationship, equation (3.25),
where

c = c∗ + c 1
2

√
κ∗ − κ + O (κ∗ − κ) (3.38)

and

μ = μ∗ + μ 1
2

√
κ∗ − κ + O (κ∗ − κ) , (3.39)

where μ∗, given by equation (3.33), and c∗ = 0 apply at κ = κ∗. Substitution of these expansions
into equations (3.25) and (3.36) gives

c 1
2
=

√
7

5(η − 1)
, (3.40)

so that, for κ ≈ κ∗,

c(κ) ∼
√

7(κ∗ − κ)
5(η − 1)

. (3.41)

Figure 7 shows that equation (3.41) matches numerical results for c(κ) for a surprisingly wide
range of κ < κ∗, especially for larger η. This result is particularly important as we have not
constructed a full perturbation solution to the travelling wave model about c = 0.

(iii) Combined approximation

We can combine the approximations to c(κ) from the slow and the fast wave to obtain a curve that
behaves like equation (3.29) for κ → 0 and like equation (3.41) as κ → κ∗. To do this, we propose a
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form like
c(κ) ≈ α1 + α2κ + α3

√
κ∗ − κ , (3.42)

where we choose

α1 = −(c0 + 2c̃1κ∗), α2 = c0

κ∗
+ 2c̃1 and α3 = 2(c0 + c̃1κ∗)√

κ∗
, (3.43)

where c0 is given by equation (3.7); c̃1 is given by equation (3.28); and κ∗ is given by
equation (3.37). In figure 7, we show that this combined approximation provides a reasonable
approximation to c(κ) for κ ∈ [0, κ∗].

(iv) Whole domain ansatz

Results in equations (3.5) and (3.32) show that f (z) is described exactly by a hyperbolic tangent
at both κ = 0 and κ = κ∗, and figure 6a suggests that f (z) remains sigmoidal. Therefore, it
may be reasonable to approximate f (z) ≈ tanh(μ(κ)z) for κ ∈ [0, κ∗], where μ(κ) depends on κ .
Additionally, assuming that μ(κ) decays linearly from μ = μ0 at κ = 0 to μ = μ∗ at κ = κ∗, we
obtain an approximation to f (z) for all κ ,

f (z) ∼ − tanh (μ(κ)z) and μ(κ) = μ∗ − μ0

κ∗
κ + μ0. (3.44)

Substituting the approximation for μ(κ) given by equation (3.44) into the far-field matching
condition (equation (3.25)) gives an approximation to c(κ) which can apply for κ ∈ [0, κ∗]. We
show that this approximation is reasonably accurate throughout κ ∈ [0, κ∗] in figure 7; however,
it is clear from numerical results in figure 6, when κ = 0.4, that the solution does not have the
symmetry of a hyperbolic tangent function.

4. Discussion and conclusion
Currently, the inactive metamaterial described mathematically by Nadkarni et al. [4] and
experimentally realized by Raney et al. [5] is able to transmit mechanical signals by the
release of stored potential energy. A limitation of this design is that mechanical energy
must be manually introduced into the system before additional signals can be transmitted.
Our study presents a novel biologically inspired metamaterial that incorporates a theoretical
biological mechanism that harvests energy to reset the system to a high potential energy
state, allowing the transmission of additional signals. Energy may be induced into the active
metamaterial through a biological process, such as actin filaments in eukaryotic cells [26–28].
That said, our analysis does not necessarily require this mechanism to have a biological
origin: the reaction mechanism may also represent a mechanical system where energy is
added through other electrochemical [44], photovoltaic, thermodynamic [20] or pneumatic [21]
subsystems.

By finding evidence of travelling wave solutions, we are able to analyse limiting behaviour
describing the signal transmission speed and wave shape. We provide a detailed analysis
to qualitatively and quantitatively understand the effect of our reaction mechanism on
signal transmission abilities of the material. Our main results consist of a set of analytical
approximations that quantify the signal transmission speed as a function of the parameters which
describe the physical properties of the material. Results in figure 7 show that the approximation
we develop to apply through the whole domain, given by equation (3.42), provides an excellent
match to the numerical results, particularly for large η. In addition, our approximation for
the wavespeed near the slow wave, given by equation (3.41), is able to provide excellent
information about the shape of c(κ) as c → 0, which we find is difficult to obtain numerically.
This approximation is also able to provide a region of the parameter space for which signal
transmission can occur, given by κ < 4ν/(5η) (equation (3.37)). This understanding of the effect
of our mechanism on the signal transmission speed is useful as it allows our active metamaterial
to be tuned to produce desirable new behaviours. For example, our results allow quantification
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of the trade-off between signal transmission speed and the response time, which is essential
for controlling the material. These insights are also essential for building a material containing
a biological mechanism that induces energy into the system. Decreasing ν and η in the same
proportion increases the transmission speed at the cost of increased sensitivity to noise-induced
misfiring, but may be essential if the energy budget is small.

A key aspect of our study is to follow Nadkarni et al. [4] by representing the bistable potential
energy function as a quartic (equation (2.2)). This approach leads us to obtain numerous analytical
approximations that characterize the effect of the biological mechanism on the transmission
speed which, although qualitatively reliable, may not always be quantitatively appropriate for
particular systems [5]. In fact, the analytical expression for the transmission speed is a result of
the similarity between our model and the well-studied bistable equation [38]. These choices mean
that our system has mechanical and algebraic properties that are similar to other bistable systems,
such as the FitzHugh–Nagumo model [31,33]. That said, we do not assume that the time scale of
the response is significantly slower than the time scale of the excitement, as is often the case in
analysis of such models. Indeed, our aim is to develop an intelligent biomechanical material that
has tuneable properties. In some sense, it is desirable that the response is as fast as possible to
allow for a short period of time between signal reception and retransmission. Future work may
examine the role of heterogeneities in the properties of the material [3,45]. Such features could
allow the material to selectively transmit signals by creating energy barriers that interact with
signals of certain properties [13].

The travelling wave analysis we conduct assumes a material of infinite length over a
large period of time. However, applications of our material will have a finite length and
may have properties not suitable for a continuum model. For example, in a material where
the spacing between elements is not significantly different from the length of the material, a
discrete travelling wave analysis may be more appropriate. The discrete problem is known to
be substantially more difficult than the continuous problem [38], so the limiting transmission
speed our analysis provides may still be useful. Furthermore, the inclusion of our biologically
inspired mechanism can be incorporated into passive metamaterials of higher dimensions
to enable new behaviours and the travelling wave analysis can be extended to investigate
two-dimensional signal propagation. In the electronic supplementary material, we produce
results which show the transmission of concurrent signals (electronic supplementary material,
figures S1 and S2) and interacting signals initiated from both ends of the material (electronic
supplementary material, figure S3). Further analysis is needed to examine the behaviour of
these types of interacting waves [46] and the material’s ability to transmit oscillatory or
concurrent signals.

To conclude, we have presented a novel, biologically inspired, active metamaterial that
can reversibly transmit mechanical signals. This work provides an analytical expression that
describes the mechanical properties of the material required for signal transmission. We also
provide numerous approximations that quantify the effect of the mechanical properties, and
the time scale of the biological response, on the transmission speed. This work demonstrates
how a new class of biologically inspired metamaterials are able to produce useful new
functionalities. The type of analysis we present is invaluable for tuning and controlling the active
metamaterial.
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