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Abstract. Consider a particle whose position evolves along the edges of a network. One
definition for the displacement of a particle is the length of the shortest path on the network between
the current and initial positions of the particle. Such a definition fails to incorporate information of
the actual path the particle traversed. In this work we consider another definition for the displacement
of a particle on networked topologies. Using this definition, which we term the winding distance,
we demonstrate that for Brownian particles, confinement to a network can induce a transition in
the mean squared displacement from diffusive to ballistic behavior, \langle x2(t)\rangle \propto t2 for long times. A
multiple scales approach is used to derive a macroscopic evolution equation for the displacement
of a particle and uncover a topological condition for whether this transition in the mean squared
displacement will occur. Furthermore, for networks satisfying this topological condition, we identify
a prediction of the timescale upon which the displacement transitions to long-time behavior. Finally,
we extend the investigation of displacement on networks to a class of anomalously diffusive transport
processes, where we find that the mean squared displacement at long times is affected by both
network topology and the character of the transport process.
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1. Introduction. The migration of stem cells during embryogenesis [1], the
transport of proteins along microtubules within eukaryotic cells [2], and the rota-
tional dynamics of polymers [3] are all examples of biological transport processes that
take place in complex environments. Transport processes in such environments are
not just of interest within the biological sciences, but are ubiquitous in the study
of traffic flow [4, 5] and human crowd management [6]. Many of these transport
processes are inherently random, and they can be investigated through studying sta-
tistics of stochastic transport models. A critical transport statistic used to classify the
character of a transport process is the mean squared displacement (MSD), which at
time t is denoted by \langle x2(t)\rangle . A particle whose position undergoes Brownian motion
and lies on the real line has MSD that evolves linearly in time, \langle x2(t)\rangle \propto t. This
is a defining feature of what is referred to as classical diffusion. For more general
transport processes the MSD follows a power law, \langle x2(t)\rangle \propto t\alpha , and the transport
process is referred to as sub-diffusive if 0 < \alpha < 1; diffusive if \alpha = 1; super-diffusive
or sub-ballistic if 1 < \alpha < 2; and ballistic if \alpha = 2.

For simple geometries such as the real line, how to define displacement is unam-
biguous: setting the origin of the real line to be at the initial position of the particle,
the displacement is defined as the current position of the particle, x(t). However, for
more complex geometries there are several ways to measure displacement. Consider a
Brownian particle on a comb lattice [7, 8, 9, 10, 11], a topological structure consisting
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of an infinite backbone (the real line) with teeth (dendrites) of infinite length that
protrude periodically out of the backbone. The MSD, when displacement is measured
as the distance traversed along the backbone only, is sub-diffusive with \langle x2(t)\rangle \propto t1/2

for long times [10]. The particle spends large amounts of time diffusing along the
protruding teeth, during which no transport along the backbone occurs. These long
periods of time, when the displacement along the backbone does not change, are re-
sponsible for the sub-diffusive nature of the MSD. However, if we define displacement
to also include the distance travelled down the teeth, then we do not retain the sub-
diffusive MSD. The choice of definition for displacement can therefore have a large
impact on what we can learn about the transport process.

For topological structures that are embedded within a two- or three-dimensional
domain a common definition of displacement is the Euclidean distance between the
current and initial positions. With this definition, the potential for geometry to induce
a qualitative change in the displacement of a particle has been widely investigated
for a class of complex structures known as fractals [12, 13, 14, 15, 16, 17]. In fact,
for Brownian particles on these structures, a random walk dimension, dw, can be
defined such that \langle x2(t)\rangle \propto t2/dw [18, 19]. However, if the topological structure
cannot be embedded within a Euclidean domain, then this measure of displacement
is no longer appropriate. For random walks on general networked topologies (not
necessarily embedded in a Euclidean domain), a measure of displacement sometimes
used in the literature is the shortest path between the current and initial positions [20].
However, the shortest path does not include information about the actual path the
particle took. Statistics of the path of a particle are of interest across research fields
such as polymer physics [21], flux lines within superconductors [22], and more broadly
in the winding statistics of stochastic processes. Previous studies of winding statistics
have focused on the winding angle of a Brownian particle in a planar domain [23, 24].
However, there has been little research on winding statistics for particles constrained
to more complex environments. Kundu, Comtet, and Majumdar [25] have studied
winding statistics of a Brownian particle constrained to the unit circle. They calculate
the exact distribution of the net number of clockwise or anticlockwise rotations as a
function of time. We investigate the winding statistics of particles constrained to
more complex networks. We introduce a new definition of displacement, which we
term the winding distance, and investigate how it evolves over time as a function of
network topology.

The remainder of this paper is organized as follows. In section 2 we motivate
and define our notion of displacement of a particle on a finite network by introduc-
ing a topological structure we term the displacement tree. In order to analyze the
displacement of a Brownian particle on a finite network at long times, we identify a
relationship between displacement along the displacement tree and displacement on
the half line with periodic bias. We calculate the strength of this bias as a function
of the average degree of the network, a very simple topological property. In section 3
we study the displacement of a diffusive particle on the half line subject to peri-
odic bias via a multiple scales approach introduced in [26]. We derive a macroscopic
advection-diffusion partial differential equation (PDE) to describe the evolution of
the distribution of the winding distance of a particle. The diffusive and advective
transport coefficients are calculated in terms of topological properties of the network.
We uncover a topological condition that enables us to distinguish whether the long-
time behavior of the displacement of a Brownian particle is characteristically diffusive
or ballistic, and a prediction of the timescale on which the transition between the
two behaviors occurs. In section 4 we generalize the transport process of the par-
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ticle from Brownian motion to a continuous time random walk (CTRW) model of
anomalous diffusion. Repeating the multiple scales approach in section 3, we derive
a macroscopic fractional advection-diffusion PDE for the evolution of the winding
distance of an anomalously diffusive particle on a network. As in section 3, we obtain
a prediction of the timescale on which a particle transitions from the short-time to
the long-time behavior and discuss its asymptotic properties for small values of \alpha .
Finally, in section 5 we summarize our results and discuss their scope for future work.

2. Displacement on networks. Consider a network \scrG = \{ \scrV , \scrE \} , where \scrV is
the set of vertices and \scrE the set of edges. Each edge has an associated edge length
Le > 0 for all e \in \scrE . A point particle traverses the edges of the network, and on any
given edge its position at time t is denoted by X(t). In order for the position X(t)
on the edge e to uniquely identify the location of the particle on the network, each
edge is oriented such that the vertex located at one end of the edge has position 0
and the other vertex has position Le (the choice of which vertex has which position
is arbitrary). The position of a particle on each edge evolves according to a standard
Brownian motion. When a particle reaches a vertex, located at positions 0 or Le, an
adjacent edge e\ast is selected uniformly at random.1 2 The new position of the particle
is then either X(t) = 0 or X(t) = Le\ast depending on how the edge e\ast is oriented.
Either the initial condition for the particle can be a position x0 \in (0, Le) on a known
edge e of the network, or the particle can reside initially on a vertex of the network.
In the latter case an initial edge is sampled uniformly from all adjacent edges to the
initial vertex.

Rather than the position of a particle at time t, it is often of interest to con-
sider some measure of how far the particle has travelled up to and including time t.
Such measures can be considered to be different definitions for the displacement of
the particle. To aid discussion of different definitions of displacement, we introduce a
simple class of networks. Let \scrG n be the network comprising two vertices connected by
n edges of the same length, L. The shortest path definition for displacement on net-
works sometimes used in the literature [20] is the length of the shortest path between
the position at time t and the initial position (at time t = 0). In certain situations, for
example when considering the rotation of polymers around cylindrical fibers [21], we
are interested in the winding statistics of stochastic processes in constrained topolo-
gies [25]. Therefore, using the shortest path definition for displacement can be an
undesirable transport statistic as it does not include any information about the wind-
ing of a particle between the initial and current times. Instead, consider a particle
attached to an ``extendable leash."" In Figure 2.1(a) we present two trajectories on the
network \scrG 3. The initial position of the particle is the leftmost vertex (Figure 2.1(a),
unfilled circle), and one end of the leash remains stationary at this vertex at all times.
The position of the particle evolves according to a Brownian motion. After selecting
an initial edge uniformly at random, the particle moves around the network and the
leash extends and contracts accordingly. To emphasize the distinction between the
two definitions of displacement, in Figure 2.1(a) we consider again the two possible
trajectories. The first has the final position of the particle on the uppermost edge

1The standard numerical scheme for simulating a Brownian motion is the Euler--Maruyama
method. For this scheme a particle performs jumps at discrete time steps of length \Delta t and, as such,
a particle will never reach a vertex but jump past it. For a discussion of how to implement the
selection of adjacent edges see Appendix A.

2The sampling procedure for the adjacent edge is formally incorporated in the definition of a
Walsh Brownian motion; for more details see [27].
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Fig. 2.1. (a) Demonstrating the definition of displacement of a particle as the winding distance.
The network \scrG 3 with two different trajectories that have the particle positioned at the same location
on the network. (b) MSD for a particle on \scrG 3 calculated from 104 realizations of a Brownian motion.
The diffusion coefficient is D = 1/2, the time step is \Delta t = 10 - 5, and the edge lengths are all equal
to one.

with the leash hooked around the rightmost vertex (Figure 2.1(a), solid line with label
1). The second trajectory has the same final position as the first. However, in this
case, the particle travelled directly along the uppermost edge (Figure 2.1(a), dashed
line with label 2), and consequently the leash corresponding to the second trajectory
is shorter. The length of the leash, which we refer to as the winding distance of the
particle, is the definition of displacement that we consider in this work.

For the circle network, \scrG 2, the winding distance of a particle is equivalent to the
displacement of a particle whose position evolves according to a Brownian motion on
the infinite one-dimensional line [25, 28]. Therefore, the winding distance, x(t), of a
Brownian particle at time t on the unit circle is well studied, and the MSD is \langle x2(t)\rangle =
2Dt for all times t, where D is the diffusion coefficient. To investigate the evolution
of the winding distance of a particle on the network \scrG 3 (Figure 2.1(a)), we perform
numerical realizations of a Brownian motion. From 104 sample paths an estimate
for the MSD is calculated, and Figure 2.1(b) shows the evolution of \langle x2(t)\rangle /t on a
logarithmic scale. Initially \langle x2(t)\rangle = 2Dt, as on short timescales the particle has not
left the initial edge and so is classically diffusive. However as time increases, the solid
(red) curve in Figure 2.1(b) deviates away from the line \langle x2(t)\rangle = 2Dt (Figure 2.1(b),
dashed line) and in the long-time limit settles to \langle x2(t)\rangle \propto t2. This characteristic
change in the MSD from diffusive to ballistic behavior can be explained by considering
the behavior of a particle at the vertices. The first trajectory in Figure 2.1(a) (solid
line) reaches the rightmost vertex via the bottom edge. At this vertex the particle
then selects a new edge uniformly at random. If the new edge is either the top or
middle edge (which occurs with total probability 2/3), then moving along the new edge
towards the leftmost vertex will increase the displacement. However, if the new edge
is the bottom edge (which occurs with probability 1/3), then the displacement will
decrease if the particle travels (back) along the bottom edge. Consider, temporarily, a
particle which hops directly between the vertices in \scrG 3 over an edge, selected uniformly
at random. The winding distance is now a stochastic process, which increases by L
if the new edge that the particle hops over is distinct from the previous edge, or
decreases by L if the new edge is the same as the previous edge. Thus the winding
distance evolves as a biased random walk on \{ 0, L, 2L, . . .\} with probability 2/3 to
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Fig. 2.2. Demonstrating the equivalence of the winding distance of a particle on the network
\scrG 3 and the displacement of a particle on the displacement tree \scrT 3. Two possible trajectories that
end at the same location on the network \scrG 3 are highlighted in dashed and dot-dashed lines. On the
corresponding displacement tree, \scrT 3, the two trajectories have different displacements.

jump in the positive direction. This is a well-studied random walk that is known to
have a ballistic MSD for all times t. Thus, the introduction of continuous stochastic
motion along the edges of the network is responsible for the transition from diffusive
to ballistic behavior.

For diffusive transport processes, can we identify which topologies will cause the
displacement of a particle to become characteristically ballistic? Given a topology that
will induce ballistic behavior, can we predict the timescale on which this transition
will occur and how it depends on properties of the network? How does topology
affect transport statistics for other transport processes? In order to investigate these
questions we first introduce a useful topological structure.

2.1. The displacement tree. Recall that, for the circle \scrG 2, the winding dis-
tance of a particle is equivalent to the displacement of a particle on the real line. A
similar relationship can be identified between the winding distance of a particle on a
network and the displacement of a particle on a new topological structure we term
the displacement tree. To construct a displacement tree, \scrT 3, for the network \scrG 3 we
need to select an initial position for the particle, which we take as the leftmost vertex
(see Figure 2.2, unfilled circles). The three choices for the initial edge result in three
potential initial trajectories for the particle. Consequently the tree \scrT 3 starts with its
root, corresponding to the initial vertex, from which three parallel trajectories pro-
trude (see Figure 2.2). Now consider a particle that has just reached the rightmost
vertex of \scrG 3; the particle must choose a new edge. If it chooses the edge it just tra-
versed and travels back along that edge, the displacement of the particle will decrease.
Travelling along the other two edges will result in an increase in displacement. To
represent these possibilities, each of the three initial trajectories of the displacement
tree branch into two new trajectories for the two edge choices that if travelled along
will increase displacement. Repeating this procedure produces an infinite tree that
spans the entire ensemble of possible trajectories for a particle on \scrG 3, oriented such
that trajectories that increase displacement lead to the right. The winding distance
of a Brownian particle on \scrG 3 is therefore equivalent to how far a Brownian particle
has travelled along \scrT 3 (Figure 2.2).

The displacement tree \scrT 3 has a very simple structure: as the edges of \scrG 3 are
all of equal length, L, the branching points appear on the tree periodically along all
trajectories at positions kL for integers k \geq 1. We define a protruding edge on the
displacement tree to be an edge that emerges from a branching point and leads to
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the right. Both the vertices in \scrG 3 have degree three, and so the number of protruding
edges from any of the branching points in the displacement tree is the same, and is
equal to two. We refer to these displacement trees as regular: every possible trajectory
of a particle on \scrT 3 of some fixed displacement will have passed the same number of
branching points, all of which had the same number of protruding edges. As a result,
we can equate the displacement of a particle on such a regular displacement tree with
the displacement of a particle undergoing a new transport process on the nonnegative
half line.

Consider a particle whose position on the regular displacement tree, X(t), lies
within the interval [(k  - 1)L, kL] for some positive integer k. The position of the
particle evolves according to a Brownian motion unless the particle is positioned on
one of the boundaries of the interval, X(t) = kL or X(t) = (k - 1)L. These boundary
positions correspond to the branching points on the displacement tree, and, as such,
a particle moves to the right of these points with probability 2/3 and to the left with
probability 1/3. It is equivalent to just consider a particle on the nonnegative half
line, where the particle moves between the intervals [(k  - 1)L, kL] for integers k \geq 1.
For a particle with position X(t) = kL, the probability 2/3 to move to the right
is incorporated as a Robin boundary condition. The particle is absorbed into the
new interval [kL, (k + 1)L] (a move to the right along the displacement tree) with
probability 2/3 and reflected back into the interval [(k  - 1)L, kL] (a move to the
left along the displacement tree) with probability 1/3. For a particle positioned at
X(t) = (k - 1)L, the particle is absorbed into the new interval [(k - 2)L, (k - 1)L] (a
move to the left along the displacement tree) with probability 1/3 and reflected back
into the interval [(k - 1)L, kL] (a move to the right along the displacement tree) with
probability 2/3. This transport process is a Brownian motion on the nonnegative half
line with singular periodic bias of strength 2/3.

2.2. Extending to general networked topologies. Networks that represent
complex environments will not necessarily have regular displacement trees. For a
general network \scrG = \{ \scrV , \scrE \} , the edge lengths, Le for e \in \scrE , are not always of equal
length and the vertices will not always have equal degree. An example of such a
network is shown in Figure 2.3(a), where two vertices are connected by three multiple
edges, similarly to \scrG 3, but now the top, middle, and bottom edges have edge lengths
3L, L, and 2L, respectively. Consider two possible trajectories for a particle starting
at the leftmost node: trajectory one is highlighted with a solid line in Figure 2.3(b),
has a length of 4L, and finishes at a vertex on the network \scrG , i.e., a branching point
on the displacement tree (see Figure 2.3(c), solid line with label 1). Trajectory two is
highlighted with a dashed line in Figure 2.3 and also has a length of 4L but finishes
along an edge, not at a branching point. Therefore knowledge of the displacement
of a particle is not sufficient to determine whether the particle is at a branching
point on the displacement tree. In order to circumvent this problem we introduce
a topologically equivalent network \scrG L = \{ \scrV L, \scrE L\} , which is formed by introducing
additional vertices into \scrG that occur with equal spacing of length L (see Figure 2.3(a),
black squares). The corresponding displacement tree for \scrG L has branching points
that occur periodically at positions kL for integers k \geq 1 along every trajectory (see
Figure 2.3(c), black squares). Note that all the additional branching points introduced
will have only one protruding edge as the additional vertices in \scrG L have degree two.
As a result, they will not introduce a bias. For general networks \scrG = \{ \scrV , \scrE \} , as long
as the edge lengths, Le, are rational or can be approximated as such, there will always
exist L > 0 such that Le = meL for some positive integer me for all e \in \scrE , and so the
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Fig. 2.3. (a) Demonstrating the mapping of a network \scrG to the topologically equivalent network
\scrG L by introducing additional vertices represented here as squares. (b) Two possible trajectories
each of length 4L are highlighted with solid and dashed lines on the network \scrG . The first trajectory
ends at a vertex, whereas the second trajectory ends midway through an edge. (c) The asymmetric
displacement tree for the network \scrG and \scrG L. The additional vertices introduced on the network \scrG L

are represented as black squares on the tree. The two trajectories considered in (b) are highlighted
on the tree using solid and dashed lines. (d) The half line [0,\infty ) with vertices at positions kL for
integers k \geq 1. The sequence of effective biases is shown as \{ \rho +1 , \rho +2 , . . .\} .

transformation from \scrG to \scrG L can be applied.
As for \scrG 3, for these more general networks \scrG L, it would be convenient to equate

the displacement of a particle diffusing on the displacement tree to the displacement
of a particle on the half line. The displacement tree for \scrG L has branching points along
all trajectories at positions kL for integers k \geq 1. However, the number of protruding
edges is not constant across trajectories with the same length. Consider again the
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highlighted trajectories of length 4L in Figure 2.3(c). The branching point at the end
of trajectory one has two protruding edges. A particle at this branching point travels
along an edge that will increase displacement with probability 2/3. However, trajec-
tory two ends at a branching point with only one protruding edge. The probability
of a particle travelling along an edge that will increase displacement is 1/2. To make
progress, we consider a particle on the displacement tree whose position lies in the
interval [(k  - 1)L, kL]. For a particle at the boundary position X(t) = kL we seek
an averaged probability, \rho +k , to select an edge on the displacement tree which lies
to the right of the branching points at kL. The probability of moving further along
the displacement tree if the particle is at vertex \nu \in \scrV L is (d\nu  - 1)/d\nu , where d\nu is
the degree of the vertex \nu . Weighting this by pk(\nu ), the probability that the particle
occupies vertex \nu given it has displacement kL, and summing over \nu \in \scrV L, yields

(2.1) \rho +k =
\sum 
\nu \in \scrV L

d\nu  - 1

d\nu 
\times pk(\nu ).

The probabilities, \rho +k , are used to define the Robin boundary conditions for the trans-
port process on the half line, just as for symmetric displacement trees. Consider a
particle in the interval [(k  - 1)L, kL] with position at the boundary X(t) = kL. The
particle is absorbed into the adjacent interval [kL, (k+1)L] (a move to the right along
the asymmetric displacement tree) with probability \rho +k . The particle is reflected back
into the interval [(k - 1)L, kL] (a move to the left along the asymmetric displacement
tree) with probability 1 - \rho +k . Therefore, (2.1) provides the sequence of probabilities,
\{ \rho +1 , \rho 

+
2 , . . .\} , to be absorbed at position kL into the interval [kL, (k + 1)L] (see Fig-

ure 2.3(e)). The probabilities pk(\nu ) are difficult to calculate as they depend heavily
on the topology of the network and the initial position of the particle. However, the
displacement of a particle transitions to ballistic behavior when the periodic bias felt
at positions kL dominates over the unbiased Brownian motion. As such, we consider
the displacement of a particle in the long-time limit, which is when the particle has
traversed sufficiently many edges for the bias to dominate. The branching points in
the displacement tree (corresponding to vertices in the network with degree greater
than two) introduce an asymmetry, biasing particles further along the tree (to the
right). As a particle moves further along the tree we are interested in the limit to
which the sequence of effective biases \{ \rho +1 , \rho 

+
2 , . . .\} converges. Assume temporarily

that the networks we consider are both finite and aperiodic. Then, as k \rightarrow \infty the
probability pk(\nu ) converges to the equilibrium distribution for a discrete random walk
on the vertices of \scrG L which is p\infty (\nu ) = d\nu /

\sum 
\omega \in \scrV L

d\omega .
3 The sequence \{ \rho +1 , \rho 

+
2 , . . .\} 

therefore converges to the limit

(2.2) \rho +\infty =
\sum 
\nu \in \scrV L

d\nu  - 1

d\nu 
\times d\nu \sum 

\omega \in \scrV L
d\omega 

= 1 - 1
\=d
,

where \=d = 2| \scrE L| /| \scrV L| is the average degree of \scrG L. Equation (2.2) provides an ap-
proximation for the probability of a particle to be absorbed at kL into the interval
[kL, (k + 1)L] once the particle is sufficiently far along the half line, that is, for large
integers k. Note that the assumption that the network is finite is not a necessary one.
Some infinite networks, such as a honeycomb lattice, have displacement trees where

3For general finite Markov chains an equilibrium distribution for the occupancy probability of
each state in the chain exists if and only if the chain (here the network) is irreducible and aperiodic.
All connected undirected networks, however, are necessarily irreducible.
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the equilibrium distribution p\infty (\nu ) does exist. We can also relax the assumption that
the network is aperiodic; see Appendix B.

In summary, in the long-time limit we have identified a link between the displace-
ment of a diffusing particle on a general network and displacement on the half line
with a constant periodic bias. The focus of the next section is to use multiple scales
analysis to explore the transport properties of the process on the half line.

3. Periodic bias on the half line: Multiple scales analysis. In this section
we consider the transport properties of a Brownian motion on the half line with
periodic bias using an approach from a recent paper by Chapman and Shabala [26].
The paper introduces a method of multiple scales to derive the macroscopic transport
equations of a random walk on a periodic lattice with spatially dependent transition
rates. The slow scale is continuous and evolves as the particle walks over many
periods of the lattice. The fast scale is discrete and is defined on a unit periodic
interval made up of N lattice sites. In contrast to [26], in this work we are interested
in the transport of a Brownian particle and so we take the limit N \rightarrow \infty to obtain a
continuous expression for the fast scale as well as the slow scale.

Brownian motion is defined in continuous space; however, to make progress we
formulate a continuous time Markov chain (CTMC) in discrete space that has the
same macroscopic properties. We nondimensionalize in space by setting the length
of each interval to be one (L = 1); the intervals [k, k + 1] are then discretized into
N +1 lattice sites each separated by distance \epsilon = 1/N (see Figure 3.1). Consider the
position of a particle on the discretized lattice that evolves according to a CTMC,
where the transition rates to leave each site are symmetric and chosen to be \lambda n\rightarrow n - 1 =
\lambda n\rightarrow n+1 = D/\epsilon 2. In the limit \epsilon \rightarrow 0 and N \rightarrow \infty , the distribution of the position of a
particle which evolves according to this CTMC is equivalent to the same distribution
arising from a Brownian motion on the half line with diffusion coefficient D. For the
remainder of this work we take D = 1/2. To include the periodic bias at branching
points, which occur at lattice sites with indices kN for all integers k > 0, we choose
asymmetric transition rates at these points. For a particle to exit on the right of the
branching point with probability \rho +\infty we choose transition rates \lambda kN\rightarrow kN+1 = \rho +/\epsilon 2

and \lambda kN\rightarrow kN - 1 = \rho  - /\epsilon 2, where \rho  - = 1 - \rho + and we have dropped the \infty subscripts
from section 2. For a diagrammatic representation of the CTMC see Figure 3.1.

Fig. 3.1. A diagrammatic representation of the CTMC on the discretized interval [k, k + 1].
The black circles represent the lattice sites which correspond to the biased branching points, and the
gray circles are the lattice sites where symmetric transport occurs.

Let pn(t) be the probability a particle occupies lattice site n \geq 0 at time t. The
master equation for pn(t) is

(3.1)
dpn
dt

= \lambda (n - 1)\rightarrow npn - 1 + \lambda (n+1)\rightarrow npn+1  - 
\bigl( 
\lambda n\rightarrow (n - 1) + \lambda n\rightarrow (n+1)

\bigr) 
pn.
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Initial conditions imply p0(0) = 1 and pi(0) = 0 for all i \geq 1 as the initial winding
distance is always zero. The winding distance is defined such that it is always non-
negative; therefore we impose a reflective boundary condition at the origin by setting
\lambda  - 1\rightarrow 0 = \lambda 0\rightarrow  - 1 = 0 and \lambda 0\rightarrow 1 = 1/\epsilon 2. We define the spatial coordinate x = \epsilon n,
and note that, for \epsilon \ll 1, x evolves on a slower timescale than the lattice index n.
Following [26], let pn(t) = Pn(x, t) so the probability density for the position of a
particle at time t depends on both the fast scale, n, and the slow scale, x. Rewriting
(3.1) in terms of Pn(x, t), we have

\partial Pn(x, t)

\partial t
= \lambda (n - 1)\rightarrow nPn - 1 (x - \epsilon , t) + \lambda (n+1)\rightarrow nPn+1 (x+ \epsilon , t)(3.2)

 - 
\bigl( 
\lambda n\rightarrow (n - 1) + \lambda n\rightarrow (n+1)

\bigr) 
Pn (x, t)

for n \geq 0 and x \in [0,\infty ). To derive a macroscopic PDE in the spatial variable x,
we assume that the variables x and n are independent. This assumption reduces
the infinite set of equations (3.2) to a finite set of N distinct equations. Introducing
circular notation i\pm 1 = (i\pm 1 - 1 mod N)+1, we write the master equation for the
probabilities Pi(x, t) as

\partial Pi

\partial t
(x, t) = \lambda i - 1\rightarrow iPi - 1(x - \epsilon , t) + \lambda i+1\rightarrow iPi+1(x+ \epsilon , t)(3.3)

 - 
\bigl( 
\lambda i\rightarrow i+1 + \lambda i\rightarrow i - 1

\bigr) 
Pi(x, t)

for i \in \{ 1, . . . , N\} and x \in [0,\infty ). The finite set of equations defines the periodic unit
interval. On the periodic unit interval there are symmetric transition rates of 1/

\bigl( 
2\epsilon 2
\bigr) 

for all adjacent sites, other than the rates \lambda N\rightarrow 1 = \rho +/\epsilon 2 and \lambda N\rightarrow N - 1 = \rho  - /\epsilon 2.

Following the derivation in [26], we introduce \vec{}P (x, t) = [P1(x, t), . . . , PN (x, t)]
T

and expand about x to obtain

(3.4) \epsilon 2
\partial \vec{}P

\partial t
(x, t) = A\vec{}P + \epsilon B

\partial \vec{}P

\partial x
+ \epsilon 2C

\partial 2 \vec{}P

\partial x2
+\scrO 

\bigl( 
\epsilon 3
\bigr) 
,

where

(3.5a) A =

\left(               

 - 1 1/2 0 \cdot \cdot \cdot 0 0 \rho +

1/2  - 1 1/2 \cdot \cdot \cdot 0 0 0
0 1/2  - 1 \cdot \cdot \cdot 0 0 0
0 0 1/2 \cdot \cdot \cdot 0 0 0

...
. . .

...
0 0 0 \cdot \cdot \cdot 1/2 0 0
0 0 0 \cdot \cdot \cdot  - 1 1/2 0
0 0 0 \cdot \cdot \cdot 1/2  - 1 \rho  - 

1/2 0 0 \cdot \cdot \cdot 0 1/2  - 1

\right)               
,

(3.5b) B =

\left(               

0 1/2 0 \cdot \cdot \cdot 0 0  - \rho +
 - 1/2 0 1/2 \cdot \cdot \cdot 0 0 0
0  - 1/2 0 \cdot \cdot \cdot 0 0 0
0 0  - 1/2 \cdot \cdot \cdot 0 0 0

...
. . .

...
0 0 0 \cdot \cdot \cdot 1/2 0 0
0 0 0 \cdot \cdot \cdot 0 1/2 0
0 0 0 \cdot \cdot \cdot  - 1/2 0 \rho  - 

1/2 0 0 \cdot \cdot \cdot 0  - 1/2 0

\right)               
,
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(3.5c) C =

\left(               

0 1/4 0 \cdot \cdot \cdot 0 0 \rho +/2
1/4 0 1/4 \cdot \cdot \cdot 0 0 0
0 1/4 0 \cdot \cdot \cdot 0 0 0
0 0 1/4 \cdot \cdot \cdot 0 0 0

...
. . .

...
0 0 0 \cdot \cdot \cdot 1/4 0 0
0 0 0 \cdot \cdot \cdot 0 1/4 0
0 0 0 \cdot \cdot \cdot 1/4 0 \rho  - /2

1/4 0 0 \cdot \cdot \cdot 0 1/4 0

\right)               
.

Note that when \rho + = \rho  - = 1/2 we have symmetric transition rates of 1/(2\epsilon 2) at all
sites on the unit interval. These rates were chosen such that the time derivative on
the right-hand side of (3.4) appears at the same order in \epsilon as the second order spatial
derivatives on the left-hand side. Therefore, as \epsilon \rightarrow 0, the probability distribution
for the displacement of a particle follows a macroscopic diffusion equation. However,
when \rho + \not = \rho  - , recall that the displacement of a particle on a networked topology may
transition from diffusive to ballistic behavior. As such, we anticipate both advective
and diffusive contributions to the macroscopic PDE describing the displacement of a
particle, and we rescale time, \^t = \epsilon  - 1t, to give

(3.6) \epsilon 
\partial \vec{}P

\partial \^t
(x, \^t) = A\vec{}P + \epsilon B

\partial \vec{}P

\partial x
+ \epsilon 2C

\partial 2 \vec{}P

\partial x2
,

where the time-dependent derivative now appears at the same order of magnitude as
the first order spatial derivative. We make the series expansion \vec{}P (x, \^t) = \vec{}P0(x, \^t) +

\epsilon \vec{}P1(x, \^t) + \epsilon 2 \vec{}P2(x, \^t) + \cdot \cdot \cdot and substitute into (3.6). Collecting terms of \scrO (\epsilon 0) yields
A\vec{}P0 = \vec{}0, which has solution \vec{}P0 = f(x, \^t)\vec{}u0(\epsilon ), where f(x, \^t) is some function to be
determined and \vec{}u0(\epsilon ) is in the kernel of A4 which is given by

(3.7) [\vec{}u0(\epsilon )]n = 2\rho +\epsilon  - 2n
\bigl( 
\rho +  - \rho  - 

\bigr) 
\epsilon 2

for 1 \leq n \leq N  - 1 and [\vec{}u0(\epsilon )]N = \epsilon , such that
\sum N

n=1 [\vec{}u0(\epsilon )]n = 1. Collecting terms
of \scrO 

\bigl( 
\epsilon 1
\bigr) 
we find

(3.8)
\partial \vec{}P0

\partial \^t
= A\vec{}P1 +B

\partial \vec{}P0

\partial x
.

Substituting in the expression for \vec{}P0 and rearranging yields

(3.9) A\vec{}P1 = \vec{}u0(\epsilon )
\partial f

\partial \^t
 - B\vec{}u0(\epsilon )

\partial f

\partial x
.

Applying the Fredholm alternative theorem5 we see that, in order for (3.9) to have
a solution, we need the right-hand side to be orthogonal to the null space of AT .
The null space is spanned by the vector \vec{}v = [1, . . . , 1]T , and the Fredholm alternative
theorem therefore implies

(3.10)
\partial f

\partial \^t
=

\vec{}vTB\vec{}u0(\epsilon )

\vec{}vT\vec{}u0(\epsilon )

\partial f

\partial x
.

4The matrix A is the rate matrix for the CTMC on the periodic interval; therefore as \vec{}u0(\epsilon ) is in
the kernel of A, it is proportional to the equilibrium distribution of the CTMC.

5The Fredholm alternative theorem states that M\vec{}x = \vec{}b has a solution if and only if for all \vec{}y such
that MT \vec{}y = \vec{}0 we also have \vec{}yT\vec{}b = \vec{}0.
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Introducing V (\epsilon ) =  - \vec{}vTB\vec{}u0(\epsilon )/\vec{}v
T\vec{}u0(\epsilon ), we can solve (3.9) to give \vec{}P1 = fx\vec{}u1(\epsilon ) +

g\vec{}u0(\epsilon ), where g(x, \^t) is some function to be determined, \vec{}u1(\epsilon ) is such that A\vec{}u1(\epsilon ) =
 - (V (\epsilon )I+B) \vec{}u0(\epsilon ), and I is the identity matrix. Noting that V (\epsilon ) = \epsilon (\rho +  - \rho  - ), we
can solve for \vec{}u1(\epsilon ) to obtain

(3.11) [\vec{}u1(\epsilon )]n = \beta 0(\epsilon ) + \beta 1(\epsilon )n+ \beta 2(\epsilon )n
2 + \beta 3(\epsilon )n

3

for 1 \leq n \leq N  - 1, where the coefficients are given by

\beta 0(\epsilon ) = 2\rho +\epsilon +
\rho + (\rho +  - \rho  - )

3

\bigl( 
1 - \epsilon 2

\bigr) 
,(3.12a)

\beta 1(\epsilon ) =  - 
\bigl( 
\rho +  - \rho  - 

\bigr) 
\epsilon  - 2

\bigl( 
\rho +  - \rho  - 

\bigr) 
\epsilon 2 +

(\rho +  - \rho  - )
2

3
\epsilon 3,(3.12b)

\beta 2(\epsilon ) = 2\rho  - 
\bigl( 
\rho +  - \rho  - 

\bigr) 
\epsilon 2,(3.12c)

\beta 3(\epsilon ) =
2 (\rho +  - \rho  - )

2

3
\epsilon 3,(3.12d)

and the final term in \vec{}u1(\epsilon ) is given by

(3.13) [\vec{}u1(\epsilon )]N = \epsilon +
\rho +  - \rho  - 

6

\bigl( 
1 - \epsilon 2

\bigr) 
.

We now proceed to collect terms of \scrO 
\bigl( 
\epsilon 2
\bigr) 
, which gives

(3.14)
\partial \vec{}P1

\partial \^t
= A\vec{}P2 +B

\partial \vec{}P1

\partial x
+C

\partial 2 \vec{}P0

\partial x2
.

As before, we rearrange (3.14) to give

(3.15) A\vec{}P2 = \vec{}u0(\epsilon )
\partial g

\partial \^t
 - V (\epsilon )\vec{}u1(\epsilon )

\partial 2f

\partial x2
 - B\vec{}u1(\epsilon )

\partial 2f

\partial x2
 - C\vec{}u0(\epsilon )

\partial 2f

\partial x2
 - B\vec{}u0(\epsilon )

\partial g

\partial x
.

Applying the Fredholm alternative theorem once again implies

(3.16)
\partial g

\partial \^t
+ V (\epsilon )

\partial g

\partial x
=

\vec{}vTB\vec{}u1(\epsilon ) + \vec{}vTC\vec{}u0(\epsilon ) + V (\epsilon )\vec{}vT\vec{}u1(\epsilon )

\vec{}vT\vec{}u0(\epsilon )

\partial 2f

\partial x2
.

We can now rewrite the power series as

(3.17) \vec{}P = \vec{}P0 + \epsilon \vec{}P1 + \cdot \cdot \cdot = (f(x, \^t) + \epsilon g(x, \^t))\vec{}u0(\epsilon ) + \epsilon fx(x, \^t)\vec{}u1(\epsilon ) + \cdot \cdot \cdot .

Introducing h\epsilon (x, \^t) = f(x, \^t) + \epsilon g(x, \^t), rescaling into time coordinates t = \epsilon \^t, and
using (3.10) and (3.16), we have

(3.18) \epsilon 
\partial h\epsilon 

\partial t
+ V (\epsilon )

\partial h\epsilon 

\partial x
= \epsilon D(\epsilon )

\biggl( 
\partial 2h\epsilon 

\partial x2
 - \epsilon 

\partial 2g

\partial x2

\biggr) 
,

where D(\epsilon ) =
\bigl( 
\vec{}vTB\vec{}u1(\epsilon ) + \vec{}vTC\vec{}u0(\epsilon ) + V (\epsilon )\vec{}vT\vec{}u1(\epsilon )

\bigr) 
/\vec{}vT\vec{}u0(\epsilon ). Upon dividing (3.18)

by \epsilon , taking the limit \epsilon \rightarrow 0 and N \rightarrow \infty where \epsilon = 1/N , and introducing h(x, t) =
lim\epsilon \rightarrow 0 \{ h\epsilon (x, t)\} , \^V = lim\epsilon \rightarrow 0 \{ V (\epsilon )/\epsilon \} , and \^D = lim\epsilon \rightarrow 0 \{ D(\epsilon )\} , we have the follow-
ing linear advection-diffusion PDE:

(3.19)
\partial h

\partial t
+ \^V

\partial h

\partial x
= \^D

\partial 2h

\partial x2
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for x \in [0,\infty ), with boundary conditions \^Dhx(0, t) + \^V h(0, t) = limx\rightarrow \infty \{ \^Dhx(x, t) +
\^V h(x, t)\} = 0 and initial conditions h(x, 0) = \delta (x). Equation (3.19) is a macroscopic
PDE for the evolution of the displacement (defined as the winding distance) of a
particle on a network \scrG , valid in the long-time limit. Note that the scalar coefficient
of \vec{}u1(\epsilon ) in (3.17) is \epsilon fx(x, \^t). Upon rescaling time t = \epsilon \^t, it is clear from (3.10) that
fx(x, t) is independent of \epsilon , and we find that lim\epsilon \rightarrow 0 \{ \epsilon fx(x, t)\} = 0. The entries of

\vec{}u1(0) given in (3.13) are finite. Therefore, as \epsilon \rightarrow 0, there is no contribution to \vec{}P (x, t)
from the term \epsilon fx(x, t)\vec{}u1(\epsilon ). The terms \^V hx and \^Dhxx in (3.19) represent the effective
drift and diffusion contributions, respectively, to the distribution of the displacement
of a particle. The transport coefficients \^V and \^D determine the strengths of these
contributions as a function of the networked topology. We use the expressions for
A, B, and C in (3.5), as well as \vec{}u0(\epsilon ) and \vec{}u1(\epsilon ) in (3.7) and (3.13), respectively, to
calculate the effective transport coefficients as

\^V = \rho +  - \rho  - ,(3.20a)

\^D =
1

2
 - 1

6

\bigl( 
\rho +  - \rho  - 

\bigr) 2
.(3.20b)

From (3.19) we calculate expressions for the first two moments of the displacement
as

\langle x(t)\rangle \sim \^V t =

\biggl( 
1 - 2

\=d

\biggr) 
t,(3.21a)

\langle x2(t)\rangle \sim \^V 2t2 + 2 \^Dt =

\biggl( 
1 - 2

\=d

\biggr) 2

t2 +

\Biggl[ 
1 - 1

3

\biggl( 
1 - 2

\=d

\biggr) 2
\Biggr] 
t,(3.21b)

where \=d is the average degree of the network. The ballistic term \^V 2t2 in (3.21b) is
nonzero when \=d > 2, that is, the average degree of \scrG L must be strictly greater than
two for the network to induce ballistic behavior in the winding distance of a diffusive
particle.

3.1. Full distribution of displacement. We are not in fact limited to approx-
imating the first two moments of the displacement but can also obtain an analytical
approximation to the full distribution. Recall that the distribution of the displace-
ment of a particle whose position evolves according to the CTMC is equivalent to the
same distribution as that of a Brownian particle in the limit \epsilon \rightarrow 0 and N \rightarrow \infty such
that \epsilon = 1/N . Note that \vec{}P (x, t) \approx h\epsilon (x, t)\vec{}u0(\epsilon ), where h(x, t) = lim\epsilon \rightarrow 0 \{ h\epsilon (x, t)\} 
satisfies (3.19) which has solution

(3.22) h(x, t) =
1\sqrt{} 
\pi \^Dt

exp

\Biggl( 
 - (x - \^V t)2

4 \^Dt

\Biggr) 
+

\^V

2 \^D
exp

\Biggl( 
 - 

\^V x

\^D

\Biggr) 
erfc

\Biggl( 
x+ \^V t

2
\sqrt{} 

\^Dt

\Biggr) 
,

where erfc(\cdot ) is the complimentary error function [29], and \vec{}u0(\epsilon ) is given in (3.7). We
introduce the function u(x) = lim\epsilon \rightarrow 0\{ \epsilon  - 1 [\vec{}u0(\epsilon )]n\} , where x = \epsilon n and find that

(3.23) u(x) = 2\rho +(1 - x) + 2\rho  - x

for x \in [0, 1) and u(1) = 1. Extending the function u(x) to be periodic on the
half line with unit period, u(x + 1) = u(x) for all x \in (0,\infty ), provides us with a
function that accounts for corrections on the microscopic scale to the displacement
predicted from the macroscopic equation for h(x, t). Then the full distribution is
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0
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Fig. 3.2. The displacement of a particle on \scrG 10 estimated using 106 realization of a Brownian
particle is shown by the solid red curve (color available online). The analytical expression for the
displacement of a particle on the network \scrG 10 in the long-time limit is shown by the dashed black
curve. All realizations of a Brownian motion were numerically integrated using the Euler--Maruyama
method with time step \Delta t = 10 - 5, D = 1/2, and L = 1.

approximated by P (x, t) \approx h(x, t)u(x). For \scrG 10, we simulate 106 realizations of a
Brownian particle terminating at time t = 50. We use these realizations to empirically
plot the distribution of displacement (Figure 3.2, red solid curve) and compare with
the analytical approximation using the solution h(x, t) in (3.22) and the periodically
extended function u(x) in (3.23) (Figure 3.2, black dashed curve). The two curves
match well, which suggests that the termination time t = 50 is sufficiently large for
the transport process to have reached its equilibrium behavior for the network \scrG 10.
However, in general how does the topology of the network affect the time taken to
reach equilibrium?

3.2. Timescale for transition to equilibrium. From (3.21) we already have
the dominant contributions to the first two moments of displacement for long times.
Now consider short times, t, sufficiently short such that the particle has a displacement
less than one, or equivalently has not reached the first branching point on the dis-
placement tree. On this timescale, the particle undergoes unbiased Brownian motion
on the half line, for which the first two moments of displacement are

(3.24) \langle x(t)\rangle \sim 2
\surd 
t\surd 
\pi 
, \langle x2(t)\rangle \sim t.

The dominant terms of the long-time and short-time analytical asymptotics in (3.21)
and (3.24), respectively, are plotted in Figure 3.3 (dashed and dot-dashed lines).
Equating the dominant contributions to the MSD on both the long and short time-
scales, \^V 2t2 and t, respectively, we obtain a prediction of the timescale, tsw, upon
which the displacement of a particle transitions from characteristically diffusive to
ballistic:

(3.25) tsw \sim 
\bigl( 
\rho +  - \rho  - 

\bigr)  - 2
=

\biggl( 
1 - 2

\=d

\biggr)  - 2

,
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Fig. 3.3. (a) The first moment of displacement of a particle on the network \scrG 10 estimated from
104 realizations of a Brownian particle (solid red curve). Analytical results of the first moment in
the short-time (dot-dashed line) and long-time (dashed line) limits. (b) The MSD of a particle on
the network \scrG 10 estimated from 104 realizations of a Brownian particle (solid red curve). Analytical
results of the MSD in the short-time (dot-dashed line) and long-time (dashed line) limits. The
predictive timescale tsw is identified with the vertical solid line. All simulations of a Brownian
motion were numerically integrated using the Euler--Maruyama method with time step \Delta t = 10 - 5,
D = 1/2, and L = 1. (Color available online.)

where \=d = 2| \scrE L| /| \scrV L| is the average degree of the network. The timescale, tsw, is
given by the intersection of the dashed and dot-dashed lines in Figure 3.3(b) (vertical
line).

To investigate the predictive capacity of the timescale tsw, we consider the MSD
over an ensemble of randomly generated aperiodic networks. The MSD of a particle
on a general network has dominant contribution \langle x2(t)\rangle \sim \^V 2t2 for long times. The
rescaling \=t = t/tsw allows for the MSD of a particle over an ensemble of topologies to
be compared on the same temporal axis, as \langle x2(t)\rangle /t \sim \=t. In Figure 3.4(a) the MSD
of a particle over an ensemble of 100 networks is presented. The 100 networks each
have 10 vertices and a range of 11 to 110 edges.6 For each network, the particle starts
at the same vertex for all realizations, but that fixed vertex is randomly selected and
highlighted in Figure 3.4(c) with a star.7

On visual inspection of the data in Figure 3.4 we see that the gray curves rarely
intersect as they collapse onto the curve \langle x2(t)\rangle /t = \=t. As such, the curves that inter-
sect the line t = tsw (see Figure 3.4(a) inset) with a lower y intercept will transition
to ballistic behavior before those curves with a greater y intercept. Thus, we plot
the y intercept, \langle x2(tsw)\rangle /tsw, for all 100 networks against the average degree of the
network in Figure 3.4(b). We see a sharper correlation between average degree and
the y intercept for networks with a higher average degree. This suggests that tsw is
a good prediction of the crossover time to ballistic motion when the average degree
is large (Figure 3.4, the network highlighted in blue). However, for networks with a
lower average degree the predictive capacity of tsw is less clear; we highlight networks

6The sampling procedure is as follows: select a desired number of edges and vertices; draw two
distinct vertices uniformly at random and join them via an edge; repeat the previous step until the
required number of edges is reached; check whether the network is periodic or disconnected---if so
reject and start over, if not take the network as a realization. This procedure allows for multiple
edges but avoids self-loops.

7The initial vertex is fixed among realizations of the transport process, so that the displacement
tree has a fixed root and the effects of the initial conditions on transition times are not averaged out.
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Fig. 3.4. (a) The MSD of a particle on 100 randomly generated networks, estimated using
104 realizations of a Brownian motion on each network. The inset shows the MSD curves for all
100 networks around the predictive timescale t = tsw, which is identified by the vertical line. The
short-time and long-time analytical expressions for the MSD are shown in solid black lines. (b) The
y intercepts of the inset in (a) are plotted against the average degree of each network. (c) Three
networks of note are shown where the width of the edges corresponds to the number of multiple
edges between the two adjacent vertices. The initial vertex in each network is represented as a
star. All simulations were calculated through numerical integration of a Brownian motion using the
Euler--Maruyama method with time step \Delta t = 10 - 5, D = 1/2, and L = 1.

in magenta8 and yellow in Figure 3.4 that both have low average degrees yet the
values of \langle x2(tsw)\rangle /tsw are very different (Figure 3.4(b)). For topologies with a low
average degree the timescale to transition from diffusive to ballistic behavior is highly
sensitive to the particular network, and as such, tsw may be less reliable as a predictor
of the crossover to ballistic motion.

8The magenta network has an average degree \=d = 2.2; however, the fixed initial condition is the
vertex of degree two highlighted with a star in Figure 3.4(c). The environment local to the initial
vertex has a significantly higher average degree than the entire network, which results in a curve that
deviates from the short-time behavior earlier (see the magenta curve in Figure 3.4(a)). The dip in the
gradient of the magenta curve occurs later, when the particle has explored the global environment,
which has a lower average degree than the local environment.
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4. Anomalous diffusion on networks. Thus far, the only transport process
we have considered is Brownian motion. An alternative modelling framework for
particle transport is a position jump process, where the position of a particle is up-
dated instantaneously after random intervals in time. A position jump process can
be formally described as a continuous time random walk (CTRW) where the jump
distance is sampled from \lambda (x), the jump distribution, and the time between jump
events is sampled from \omega (t), the waiting time distribution. For a review of transport
properties of these CTRWs see [30]. The freedom to prescribe any jump and waiting
time distributions allows a CTRW to describe a broad range of physical processes.
Consider a waiting time distribution that for long times has asymptotic power law
behavior, \omega (t) \sim t - (1+\alpha ) for some \alpha . If \lambda (x) has zero mean and finite variance, then
for \alpha \geq 1, the position of a particle evolving according to the CTRW on the real line
in the long-time limit is equivalent to the position of a Brownian particle and hence
has an MSD of \langle x2(t)\rangle \propto t. However, for 0 < \alpha < 1, \omega (t) is heavy tailed, and the
mean waiting time between jump events diverges. Such transport processes for large
times have an MSD on the real line of \langle x2(t)\rangle \propto t\alpha , and are known as anomalously
diffusive.

Using the displacement tree (section 2), the winding distance of anomalously dif-
fusive transport on networks can be identified with displacement of the same transport
process on the half line subject to periodic bias. As before, we consider a multiple
scales approach and discretize the half line into intervals, [k, k+1] for integers k \geq 0,
each of N +1 lattice sites separated by a distance \epsilon = 1/N . The position of a particle
on the lattice evolves according to a CTRW rather than a CTMC because the wait-
ing times for jumps between adjacent sites are no longer exponentially distributed.
Similarly to section 3, we now select the fractional transition rates9 to represent the
periodic bias felt at the ends of the intervals [k, k + 1]. Thus, for a particle to exit a
lattice site with the index kN to the right with probability \rho +, we select the transition
rates \mu kN\rightarrow kN+1 = \rho +/\epsilon 2 and \mu kN\rightarrow kN - 1 = \rho  - /\epsilon 2, and all other lattice sites n have
symmetric transition rates \mu n\rightarrow n+1 = \mu n\rightarrow n - 1 = 1/

\bigl( 
2\epsilon 2
\bigr) 
.

Let pn(t) be the probability that a particle occupies lattice site n at time t. The
temporal evolution of the probability pn(t) evolves according to the fractional master
equation [31], a generalization of the master equation seen in section 3. We define the
operator \partial \alpha /\partial t\alpha as the Riemann--Liouville fractional derivative

(4.1)
\partial \alpha 

\partial t\alpha 
\{ y(t)\} = 1

\Gamma (1 - \alpha )

\partial 

\partial t

\int t

0

y(t\prime )

(t - t\prime )
\alpha dt

\prime .

The fractional master equation for the probability pn(t) is

(4.2)
\partial \alpha pn
\partial t\alpha 

= \mu (n - 1)\rightarrow npn - 1 + \mu (n+1)\rightarrow npn+1  - 
\bigl( 
\mu n\rightarrow (n - 1) + \mu n\rightarrow (n+1)

\bigr) 
pn,

where n \geq 0. As before, the particle is initially at the origin; therefore p0(0) = 1 and
pi(0) = 0 for all i \geq 1. To account for the reflective boundary condition at the origin,
we set \mu  - 1\rightarrow 0 = \mu 0\rightarrow  - 1 = 0 and \mu 0\rightarrow 1 = 1/\epsilon 2. Introducing the spatial coordinate
x = \epsilon N , where \epsilon \ll 1, we write pn(t) = Pn(x, t) so that the probability density for the
position of a particle at time t depends on both the fast scale n and the slow scale x.
Treating the two variables x and n independently and rewriting the fractional master

9The mean time for a jump to occur on the lattice diverges, and as such we do not consider
transition rates as we would for a CTMC. Instead we introduce a fractional transition rate [31].
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equation (4.2) in terms of Pn(x, t) gives the finite set of equations

\partial \alpha Pi

\partial t\alpha 
(x, t) = \mu i - 1\rightarrow iPi - 1(x - \epsilon , t) + \mu i+1\rightarrow iPi+1(x+ \epsilon , t)(4.3)

 - 
\bigl( 
\mu i\rightarrow i+1 + \mu i\rightarrow i - 1

\bigr) 
Pi(x, t)

for i \in \{ 1, . . . , N\} and x \in [0,\infty ), where i\pm 1 = (i\pm 1 - 1 mod N) + 1. For the
periodic interval, as before the transition rates out of all sites are symmetric and
equal to 1/

\bigl( 
2\epsilon 2
\bigr) 
, other than the rates \mu N\rightarrow 1 = \rho +/

\bigl( 
\epsilon 2
\bigr) 
and \mu N\rightarrow N - 1 = \rho  - /

\bigl( 
\epsilon 2
\bigr) 
.

Introducing \vec{}P (x, t) = [P1(x, t), . . . , PN (x, t)]
T

and expanding the right-hand side of
(4.3) about x, we find

(4.4) \epsilon 2
\partial \alpha \vec{}P

\partial t\alpha 
(x, t) = A\vec{}P + \epsilon B

\partial \vec{}P

\partial x
+ \epsilon 2C

\partial 2 \vec{}P

\partial x2
+\scrO 

\bigl( 
\epsilon 3
\bigr) 
,

where the matrices are as given in (3.5). Let h(x, t) denote the macroscopic proba-
bility density function for a particle to have a winding distance of x at time t. The
analysis proceeds identically to that of section 3, and we derive the following fractional
advection-diffusion PDE:

(4.5)
\partial \alpha h

\partial t\alpha 
(x, t) + \^V

\partial h

\partial x
= \^D

\partial 2h

\partial x2

for x \in [0,\infty ), with boundary conditions \^Dhx(0, t) + \^V h(0, t) = limx\rightarrow \infty \{ \^Dhx(x, t) +
\^V h(x, t)\} = 0 and initial conditions h(x, 0) = \delta (x). The transport coefficients \^V and
\^D are given in (3.20). This macroscopic fractional PDE is valid for large times, and
the first two moments of displacement are calculated to be

\langle x(t)\rangle \sim 
\^V t\alpha 

\Gamma (1 + \alpha )
=

1

\Gamma (1 + \alpha )

\biggl( 
1 - 2

\=d

\biggr) 
t\alpha ,(4.6a)

\langle x2(t)\rangle \sim 2 \^V 2t2\alpha 

\Gamma (1 + 2\alpha )
+

2 \^Dt\alpha 

\Gamma (1 + \alpha )
(4.6b)

=
2

\Gamma (1 + 2\alpha )

\biggl( 
1 - 2

\=d

\biggr) 2

t2\alpha +

\Biggl[ 
1 - 1

3

\biggl( 
1 - 2

\=d

\biggr) 2
\Biggr] 

t\alpha 

\Gamma (1 + \alpha )
.

Equation (4.6) demonstrates that anomalous diffusion on a network can induce a
variety of transitional behaviors. Consider the analytical expression in the long-time
limit for the MSD in (4.6b). At large times the dominant contribution is proportional
to t2\alpha when \=d > 2. If 0 < \alpha < 1/2, the winding distance of the particle in the long-
time limit remains sub-diffusive but with an increased exponent of 2\alpha . If \alpha = 1/2, the
winding distance becomes classically diffusive. For 1/2 < \alpha < 1 the winding distance
transitions to sub-ballistic or super-diffusive. Generalizing to anomalously diffusive
transport processes demonstrates that in order to capture the effect of network topol-
ogy on the winding distance of a particle, one must also incorporate details of the
transport process itself.

As in section 3 we shall compare the first two moments of displacement on both
long and short timescales. On short timescales, where the particle has not left the
first edge, the displacement of a particle is equivalent to the displacement of a particle
whose position is described by a fractional diffusion equation on the half line. The
first two moments of displacement [32] on short timescales are

(4.7) \langle x(t)\rangle \sim t\alpha /2

\Gamma (1 + \alpha /2)
, \langle x2(t)\rangle \sim t\alpha 

\Gamma (1 + \alpha )
.
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Fig. 4.1. (a) The rescaled MSD of a particle on the network \scrG 3 estimated from 104 realizations
of the CTRW (solid red curves) for an ensemble of \alpha values. Analytical results of the rescaled MSD
in the short-time (solid black line) and long-time (dashed black lines) limits. (b) The rescaled MSD
of a particle on the network \scrG 10 estimated from 104 realizations of the CTRW (solid red curves) for
an ensemble of \alpha values. Analytical results of the rescaled MSD in the short-time (solid black line)
and long-time (dashed black lines) limits. The selected values of \alpha are \{ 0.1, 0.25, 0.50, 0.75, 1.0\} .
For \alpha = 1.0 the MSD was calculated using the Brownian motion simulations from Figure 2.1 and
Figure 3.3. For the other values of \alpha , realizations of the CTRW were simulated with a normally
distributed jump length distribution with zero mean and variance \sigma 2, and a Pareto waiting time

distribution with tm =
\bigl( 
\sigma 2/\Gamma (1 - \alpha )

\bigr) 1/\alpha 
. For the values \alpha = \{ 0.1, 0.25, 0.50, 0.75\} the standard

deviations used are \sigma = \{ 10 - 2, 10 - 2, 10 - 2, 10 - 2.75\} , respectively. The edges are all of unit length.
(Color available online.)

We compare the dominant short-time and long-time behaviors for the MSD to estimate
the transition timescale

(4.8) tsw =

\Biggl[ 
\Gamma (1 + 2\alpha )

2\Gamma (1 + \alpha )

\biggl( 
1 - 2

\=d

\biggr)  - 2
\Biggr] 1/\alpha 

,

where for \alpha = 1 we recover (3.25).
Consider the limit where \alpha \rightarrow 0, which corresponds to a transport process where

the waiting time distribution between jump events becomes increasingly heavy tailed.
Expanding (4.8) for small \alpha yields

(4.9) tsw \sim 
\biggl( 
1 +

\pi 2

4
\alpha 

\biggr) 
exp

\Biggl[ 
 - 

\Biggl( 
\gamma +

log(2)

\alpha 
+

2 log
\bigl( 
1 - 2/ \=d

\bigr) 
\alpha 

\Biggr) \Biggr] 
,

where \gamma is the Euler--Mascheroni constant. In the limit \alpha \rightarrow 0 there are two cases
for the limiting behavior of the timescale tsw. If the average degree of the network
satisfies \=d < 2

\bigl( 
2 +
\surd 
2
\bigr) 
, then tsw \rightarrow \infty , and if \=d \geq 2

\bigl( 
2 +
\surd 
2
\bigr) 
, then tsw \rightarrow 0. To

explain this, in Figure 4.1 we estimate the rescaled MSD, m(t) = \Gamma (1 + \alpha )\langle x2(t)\rangle /t\alpha ,
from simulations of the CTRW on the networks \scrG 3 and \scrG 10 over an ensemble of values
for \alpha . The waiting times are Pareto distributed, w(t) = \alpha t\alpha m/t\alpha +1 for t \geq tm, and the
jump lengths are normally distributed with zero mean and variance \sigma 2. We choose the

minimum value of the waiting time, tm =
\bigl( 
\sigma 2/\Gamma (1 - \alpha )

\bigr) 1/\alpha 
, to ensure the simulations
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of the CTRW agree with the multiscale analysis.10 For \scrG 3 the average degree is less
than 2(2 +

\surd 
2), and so tsw \rightarrow \infty as \alpha \rightarrow 0 (see intersection points with m(t) = 1

in Figure 4.1(a)). On inspection we see that the time to converge to equilibrium
behavior increases as expected when \alpha \rightarrow 0. In contrast, the average degree of \scrG 10
is greater than 2(2 +

\surd 
2), meaning tsw \rightarrow 0 as \alpha \rightarrow 0 (see intersection points with

m(t) = 1 in Figure 4.1(b)). But if we inspect the curve in Figure 4.1(b) corresponding
to \alpha = 0.1, we see it has transitioned away from the short-time behavior significantly
for times as small as t = 10 - 4 and is only just converging to equilibrium behavior
at t = 1010, a difference of 14 orders of magnitude. Thus, for small values of \alpha , it
is difficult to consider a single value (such as tsw) that represents the time taken to
transition to equilibrium behavior as the change occurs gradually over a large window
of time. That said, for values of \alpha closer to one the transition occurs more rapidly,
and tsw provides a good predictive timescale.

5. Summary and discussion. In this work, we have investigated the influence
of network topology on the evolution of the displacement of a particle whose position
evolves according to either a diffusive or an anomalously diffusive transport process.
In section 2 we define our notion of displacement of a particle as the winding distance,
which is a measure of how far a particle has travelled as it winds around the network.
To investigate the evolution of the winding distance we introduced a topological struc-
ture we term the displacement tree and noted that the winding distance of a particle
is equivalent to the displacement of a particle along the tree. Furthermore, in the
long-time limit, a link between the displacement of a particle on the tree and the
displacement of a particle on the half line with periodic bias was highlighted. The
simpler transport process on the half line has a periodic bias with strength \rho +\infty , a
quantity that can be calculated in terms of the average degree of the network.

In section 3 a multiple scales approach from [26] was used to derive an advection-
diffusion PDE for the displacement of a particle whose position evolves according to
a Brownian motion on the half line with periodic bias. The advective and diffusive
transport coefficients are calculated in terms of the periodic bias \rho +\infty . From these
coefficients a topological condition was derived for whether the long-time behavior of
the winding distance switches to ballistic motion or remains diffusive. By comparing
the MSD for the short-time and long-time limits, a prediction of the timescale upon
which a network induces the qualitative switch from diffusive to ballistic behavior was
obtained. For an ensemble of 100 randomly generated networks we found that the
predictive timescale performs better for networks with a higher average degree.

Finally, in section 4, we discussed an extension to a class of anomalously diffusive
transport processes using the CTRW framework. Through the use of the fractional
master equation we derived a time fractional advection-diffusion PDE for the evolution
of the displacement of a particle on the half line with periodic bias. Our results
showed that the characteristic nature of the long-time behavior depends upon the
transport process itself. We found that, depending on the value of the exponent \alpha ,
the displacement of a particle in the equilibrium limit can remain sub-diffusive, become
diffusive, or become super-diffusive. Similarly to section 3, we derived a predictive

10The Laplace transform of w(t) for small values of s is given by \~w(s) \approx 1  - \Gamma (1  - \alpha )t\alpha ms\alpha ;
thus the coefficient of s\alpha provides a timescale, \tau , upon which the Pareto distribution decays, where
\tau \alpha = \Gamma (1  - \alpha )t\alpha m. Following the derivation of the fractional diffusion equation seen in [30] the
fractional diffusion coefficient is equal to \sigma 2/ (2\tau \alpha ). The hopping rates in (4.2) are selected such that
as \epsilon \rightarrow 0, the resulting fractional diffusion coefficient is equal to 1/2. Thus, we select \tau \alpha = \sigma 2, or

equivalently, tm =
\bigl( 
\sigma 2/\Gamma (1 - \alpha )

\bigr) 1/\alpha 
.
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timescale upon which these transitions occur and explored its validity as a function
of the parameter \alpha , the exponent in the heavy-tailed waiting time distribution of the
CTRW.

This work introduced the winding distance, a new measure of displacement for
particles on networked topologies. Using the winding distance to investigate both
diffusive and anomalously diffusive transport processes has highlighted that both the
topology of the network and the nature of the transport process itself play critical
roles in the evolution of particle displacement. Active transport through networked
environments is a critical feature of many biological systems, such as the cytoplasmic
streaming seen within Drosophila oocytes [33, 34], the transport of bronchial mucus
[35], and the transport of a broad range of biomolecules along microtubular networks
[36, 37]. Explicitly incorporating network topology within these biological transport
systems requires the theoretical study of models for stochastic transport in networked
environments [38, 39]. Therefore, future work will extend our investigation of the
winding distance to transport processes with a directional bias along each of the
edges in a network.

Appendix A. Simulating the transport processes. Here we present the
algorithm used to compute realizations of a Brownian particle on a network \scrG =
\{ \scrV , \scrE \} , using the Euler--Maruyama method.

1: Assign orientations to each edge in the network, select an initial vertex for the
particle, set t = 0, the termination time T , and the time step \Delta t.

2: Sample an adjacent edge, e, to the initial vertex uniformly at random. Let X(0) =
0 or X(0) = Le depending on the orientation of edge e.

3: while t < T do
4: if t = 0 then update the position as follows:

(A.1) X (t+\Delta t) = X(t) +
\surd 
2D\Delta t | \xi | ,

where \xi \sim \scrN (0, 1).
5: else update the position as follows:

(A.2) X (t+\Delta t) = X(t) +
\surd 
2D\Delta t \xi ,

where \xi \sim \scrN (0, 1).
6: end if
7: if X(t+\Delta t) < 0 then sample a new edge e\ast , uniformly at random from the

adjacent edges to edge e (not including e itself) at the end with position 0.
8: if the particle enters the new edge e\ast at the end with position 0 then

update the new position as

(A.3) X(t+\Delta t)\leftarrow  - X(t+\Delta t).

9: else if the particle enters the new edge e\ast at the end with position Le\ast 

then update the new position as

(A.4) X(t+\Delta t)\leftarrow Le\ast +X(t+\Delta t).

10: end if
11: Update e = e\ast .
12: else if X(t+\Delta t) > Le then sample a new edge e\ast , uniformly at random from

the adjacent edges to edge e (not including e itself) at the end with position Le.
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13: if the particle enters the new edge e\ast at the end with position 0 then
update the new position as

(A.5) X(t+\Delta t)\leftarrow X(t+\Delta t) - Le.

14: else if the particle enters the new edge e\ast at the end with position Le\ast 

then update the new position as

(A.6) X(t+\Delta t)\leftarrow Le\ast + Le  - X(t+\Delta t).

15: end if
16: Update e = e\ast .
17: end if
18: Update the time t = t+\Delta t.
19: end while

For the CTRWs seen in section 4 we select the jump distribution to be normal
with zero mean and standard deviation \sigma . The above algorithm is easily adapted to
simulate the CTRW on a network. Instead of fixed time steps, \Delta t, update the time t
with random waiting times from the Pareto distribution, and replace

\surd 
2D\Delta t in (A.1)

and (A.2) with \sigma . The CTRW simulations must agree with the multiscale analysis in
section 4, on both long and short timescales---in particular, on timescales sufficiently
short that a particle has not left the initial edge. The multiscale analysis discretizes
the unit interval into N +1 lattice sites. As N \rightarrow \infty the width of each site, \epsilon = 1/N ,
tends to zero, and a particle will undergo a large number of jumps before traversing
an entire interval. Therefore, for the CTRW to agree with the multiscale analysis on
short timescales, we take \sigma 2 \ll 1, such that many jumps must occur before a particle
traverses an edge.

Appendix B. Periodic networks. Recall the sequence of biased probabilities
\{ \rho +1 , \rho 

+
2 , . . .\} in section 2. The effective bias for a particle with displacement kL is

given by

(B.1) \rho +k =
\sum 
\nu \in \scrV L

d\nu  - 1

d\nu 
\times pk(\nu ),

where pk(\nu ) is the probability of being at vertex \nu given a displacement of kL. We
previously assumed that the network was aperiodic when viewed as a CTMC, so
that this sequence was guaranteed to converge to the unique value \rho +\infty given in (2.2).
However, if instead the network is periodic, then the probability pk(\nu ) converges to
a periodic sequence \{ p\infty ,1(\nu ), . . . , p\infty ,m(\nu )\} , where m is the period. Weighting these
probabilities by (d\nu  - 1)/d\nu , we calculate the effective probabilities of moving to the
right along the displacement tree as

(B.2) \rho +\infty ,j =
\sum 
\nu \in \scrV L

d\nu  - 1

d\nu 
\times p\infty ,j(\nu )

for j \in \{ 1, . . . ,m\} . We are now able to use the multiple scales approach of section 3
for the case of periodic networks. The periodic unit interval must be extended to have
mN +1 lattice sites, and there will now be internal lattice sites that have asymmetric
rates. The analysis proceeds identically to the previous analysis; the only changes are
in the size and entries of the matrices in (3.5).
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