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Crowded transport within networked
representations of complex geometries
Daniel B. Wilson 1,3✉, Francis. G. Woodhouse1,4, Matthew J. Simpson 2 & Ruth E. Baker1

Transport in crowded, complex environments occurs across many spatial scales. Geometric

restrictions can hinder the motion of individuals and, combined with crowding, can have

drastic effects on global transport phenomena. However, in general, the interplay between

crowding and geometry in complex real-life environments is poorly understood. Existing

analytical methodologies are not always readily extendable to heterogeneous environments

and, in these situations, predictions of crowded transport behaviour rely on computationally

intensive mesh-based approaches. Here, we take a different approach based on networked

representations of complex environments in order to provide an efficient framework to

explore the interactions between environments’ geometry and crowding. We demonstrate

how this framework can be used to extract detailed information both at the level of the

individual as well as of the whole population, identify the environments’ topological features

that enable accurate prediction of transport phenomena, and provide insights into the design

of optimal environments.
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The efficacy of a wide range of cellular processes within
living organisms, from protein synthesis1 to the initiation
of a T-cell immune response2, hinges upon the timely

transport of macromolecules through crowded intracellular
environments3. The motion of individuals within complex
environments is central, but not limited to, cell biology, and is
important in a wide range of scientific and technological dis-
ciplines. Indeed, understanding the roles that both geometry and
crowding play in regulating transport processes has immediate
and disparate applications across a vast range of spatial and
temporal scales, from designing planning algorithms for auton-
omous robotic motion4 to utilising the transport of nanoparticles
to deliver targeted drug therapies5. However, despite the ubiquity
of applications, a general means to quantify and characterise the
relationships between environmental geometry, crowding and
transport phenomena in complex real-life environments remain
elusive. Mathematical studies such as this one can play a key role
in identifying and quantifying such relationships.

The behaviour of crowded individuals has captured the
attention of mathematicians and physicists for decades6–9, and
the environments in which the individuals are constrained to
have been found to have large consequences for the emergent
transport behaviour. For particles diffusing along an infinite one-
dimensional lattice10, excluded volume interactions between
particles significantly hinder the motion of tracer particles and
can induce a qualitative shift in the time-dependence of the mean
squared displacement (MSD) from classically diffusive (MSD ~ t)
to anomalously diffusive (MSD ~ tα, where α < 1). However, for
some fractal environments, including diffusion-limited aggre-
gates, the MSD for a tracer particle has the same exponent both in
the presence and absence of crowding11. Moreover, on comb
lattices (one-dimensional backbones with periodic and infinite
extrusions representing low-dimensional environments) exclu-
sion interactions along the backbone result in a speed-up of the
transport of a tracer particle, and even results in super-diffusive
behaviour (MSD ~ tα, where α > 1) on intermediate timescales12.
Crowding in complex environments has also been studied on
higher-dimensional (greater than or equal to two) regular lattices,
such as diffusion in the presence of obstacles13–15 and crowded
transport on Manhattan lattices16 where environmental com-
plexity arises via disordered directionality in the lattice. The above
studies make analytical progress in understanding crowded
transport behaviour by utilising symmetry and scaling arguments,
as well as exploiting the infinite size of these domains. Whilst
less common, there are studies that make analytical progress
in understanding crowded transport in finite heterogeneous
environments. For example, the transport of proteins within
heterochromatin has been studied using results from transport
within fractal environments17. Additionally, analytical results
from lattice gas cellular automata models have been used to study
cell migration in heterogeneous environments, by coupling
the automata to a vector field representing environmental
complexity18. However, when interested in exploring microscopic
properties of crowded transport in detailed non-fractal real-life
environments, such as the intracellular environment, many of
these analytical approaches are not readily extendable. In such
situations, sophisticated numerical approaches are employed
instead.

Significant technological advances in imaging techniques, such
as light-sheet microscopy19 and x-ray tomography20, have dras-
tically enhanced the availability of high-resolution images of
complex environments (see Fig. 1a). Incorporating these detailed
geometries into mathematical studies of crowded transport
requires discretisation of the geometry into a high-resolution
mesh, this is a collection of interconnected voxels upon
which transport models can be studied numerically. However,

numerically integrating equations of motion on these meshes can
incur significant computational costs, particularly for stochastic
modelling paradigms that require repeated simulations to explore
expected transport behaviour21–23. If these computational costs
are too high they present a barrier to studying a large ensemble of
geometries, as is necessary to properly characterise how geometry
and crowding influences transport behaviour. In addition, it
remains unclear how to relate such high-dimensional descriptions
of the geometry with statistics of the transport process in order to
fully understand the relationship between geometry and crowded
transport.

Circumventing the limitations of high-resolution meshes
requires a framework for studying crowded transport in complex
environments that avoids traditional spatial discretisation meth-
ods. A proposed alternative description of complex geometries is
to represent the geometry as a network24–26. In particular, geol-
ogists have used these networked representations to study the
transport of fluid and sediment through porous media27. There
are several available algorithms (such as the maximal ball
algorithm25 and SNOW26) to extract networked representations
that initially dissect complex geometries into several reservoirs
(see Fig. 1b). Connecting these reservoirs are narrow regions of
space that are referred to as throats. These throats represent
highly restricted regions where individuals experience strong
crowding, as seen within heterogeneous porous media27, nano-
tubes in microfluidic devices28, and in newly discovered nano-
tunnels that connect mitochondria29. Networks are formed
by assigning the reservoirs to be the network nodes, and an edge
connects two nodes if the corresponding reservoirs are connected
by a throat. The reservoirs are often described as balls with a
volume equal to the volume of the reservoir, this leads to what is
referred to as a balls and sticks network (Fig. 1c). By virtue of the
fact that the reservoirs are typically much larger than a voxel in a
mesh reconstruction (Fig. 1c), such networks provide a low-
dimensional, efficient characterisation of the complex geometry.
Indeed, application of a network extraction algorithm (SNOW26)
to the cardiomyocyte image in Fig. 1a produces a network with 81
reservoirs, whereas the natural Cartesian mesh (where each pixel
is represented as a voxel) has 16,774 voxels (see Supplementary
Note 4 and Supplementary Fig. 10).

Beyond dimensionality reduction, networked representations
allow one to characterise the role of geometry in regulating
transport processes due to the breadth of available topological
descriptors that can predict networked transport behaviour30–32.
For example, two classes of summary statistics that are known
to accurately predict various emergent transport behaviours
are degree-based statistics (these depend solely on the degree
distribution of the network, where the degree of a node is equal
to the number of edges adjacent to that node) and spectral-based
statistics (quantities based on the eigendecomposition of
network-related matrices, such as the graph Laplacian33).

Whilst the majority of the literature on networked transport
focuses on single non-crowded individuals, there have been sev-
eral studies exploring crowded transport processes on networks.
The totally asymmetric simple exclusion process (TASEP) is a
transport process where particles can move only in one direction
along one-dimensional segments and individuals cannot bypass
each other. The TASEP has been studied extensively on the one-
dimensional line34, small graphs35,36 and large networks37–39,
where the uni-directionality of the transport results in various
behaviours such as shocks and traffic jams40. In addition the
TASEP has been used to model, for example, protein dynamics
along microtubule networks41,42. In these models proteins are
assumed globally well-mixed within a single large reservoir which
is coupled to a filament network upon which the proteins perform
asymmetric random walks with exclusion.
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In contrast, in this work, we are interested in the unbiased
transport of individuals that are locally well-mixed within the
reservoirs that make up the network. Moreover, the individuals
are purely constrained to the network and experience crowding
only within geometrically constrained regions (Fig. 1d). As such
we build a mathematical framework to study the transport of
individuals on general finite networks (in the form of balls and
sticks, Fig. 1d) where crowding effects are present only along the
edges of the network.

We introduce our framework for crowded, networked transport
by presenting a hierarchy of diffusive transport models with
increasing computational scalability (Supplementary Table 1 pro-
vides a summary). The ability of our framework to identify
governing principles connecting transport, crowding and geometry
is demonstrated through an examination of how crowding and
topology affect networked equilibration times43. Understanding this
relationship is crucial as many results within statistical physics
assume an equilibrated population, but the validity of this
assumption is rarely addressed44. A key result of our work is that
heterogeneity in the microscopic structure of complex environ-
ments enables low-connectivity networks, as seen in networked
descriptions of real-world environments (Fig. 1a–d), to achieve
globally minimal equilibration times. We conclude by extending
our framework to provide information on the dynamics of a single
motile individual, an extension which opens the door to studying
the dynamics of intracellular signalling pathways45, where the
dynamics of individual proteins are known to control a vast range
of biological processes, such as T-cell activation and stem cell
differentiation.

Results
Individual crowding combined with geometry-induced crowding
drastically slows equilibration. A complex environment (Fig. 1a–d)
is described by a network G ¼ fV; Eg, where V is the set of reservoirs
and their connectivity is specified by the set of edges E. Each edge
represents a narrow channel within the geometry where crowding
between individuals is non-negligible (Fig. 1d). To incorporate
crowding, a narrow channel ði; jÞ 2 E connecting distinct reservoirs i
and j is discretised using a one-dimensional lattice with integer length
K(i,j), where individuals undergo a symmetric random walk and at
most one individual may occupy each lattice site (Supplementary
Note 3 provides a relaxation of this assumption), this process is
known as a symmetric simple exclusion process (SSEP)46. Crowded
transport within this networked environment is modelled using a

canonical framework for stochastic processes, the continuous-time
Markov chain (CTMC). A population of N individuals is distributed
on the network (Fig. 2c) and their positions evolve as follows.
An individual within a narrow channel lattice site attempts to jump
into an adjacent lattice site or reservoir at rate α. If the adjacent site is
already occupied a collision event occurs and the jump is aborted
(Fig. 2a). However, due to the volumetric differences between
reservoirs and narrow channels (Fig. 1b) crowding effects in reser-
voirs are assumed negligible and so jumps into reservoirs are never
aborted. Individuals within each reservoir are assumed well-mixed.
Those in reservoir i attempt to jump into the first lattice site of one of
their connecting narrow channels at rate γi (Fig. 2a), this means that
τi ¼ γ�1

i is the average time taken for an individual in the ith
reservoir to exit the reservoir. This exit time depends strongly on the
local geometry of each reservoir47,48 and can be calculated as follows.
To calculate the mean reservoir exit time for a well-mixed individual
we can first consider narrow exit time problems, for which both
analytical and computational approaches are readily available48–50.
Narrow exit times quantify the time taken for a particle to reach a
narrow opening (such as the opening of a narrow channel) condi-
tional on the initial position of the individual. Integrating these
quantities over the reservoir and normalising by the reservoir volume,
will yield mean exit times for well-mixed individuals. However, in the
interest of maintaining generality, we keep the parameters τi to be
abstract, but note particular reservoir geometries can be incorporated
as described above. This CTMC is referred to as the full Markov
model (FMM) and a formal description is given in the “Methods”,
section “Full Markov model”.

Evaluating how geometry combined with crowding can impact
transport behaviour requires a suitable summary statistic with which
to characterise transport. Intuitively, it can be reasoned that the
effects of crowding between individuals along narrow channels
should result in a “slowing down” of the transport process as
individuals in the channels block the paths of others. The insightful
statistic to quantify such an effect is the time taken for an initially
unequilibrated population of individuals to become well-mixed. This
time is known as the equilibration time and is calculated as the
reciprocal of the spectral gap (second smallest eigenvalue in absolute
value) of the transition matrix for the CTMC51. The average reservoir

mean exit time, hτi ¼ ∑jVj
i¼1 τi

� �
=jVj, quantifies the time for an

individual to attempt to leave the average reservoir. As the individual
τi are dictated by the geometry of each reservoir, the average reservoir
mean exit time is a global geometric descriptor of the complex
environment. We note that considering higher-order moments of the

Fig. 1 Complex environments and their networked representations. a An electron-microscopy image highlighting the substructures within a
cardiomyocyte cell. The highlighted dark grey regions are mitochondria which act as barriers to macromolecular transport. This image was provided by the
Cell Structure and Mechanobiology Laboratory at the University of Melbourne. b The free space within a subsection of the cardiomyocyte is segmented
into five distinct reservoirs, connected by narrow channels highlighted in red. c The natural networked topology arising from the cell segmentation.
d Macromolecules (small circles) experience stronger crowding effects within the narrow channels.
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reservoir exit time would reveal higher-order geometric effects,
however, these cannot be incorporated in a Markovian model such as
the one we consider here. By computing the spectral gap of the
transition matrix of the FMM, we explore the relationship between
the equilibration time and the average reservoir exit time for a small
network (Fig. 2b, inset) in both the absence and presence of
crowding. In the absence of crowding, networks with lower average
reservoir mean exit times will facilitate quicker equilibration (Fig. 2b,
dot-dashed curve). Intuitively this is unsurprising as individuals
attempt to move between reservoirs more frequently. With crowding
effects incorporated, the monotonicity between the average reservoir
mean exit time and the equilibration time is lost (Fig. 2b, solid curve).
The equilibration time rises once the volume-excluding interactions
within the narrow channels induce a bottle-neck that impedes
transport between reservoirs. Thus, a combination of the localised
geometry responsible for creating narrow channels (geometry-
induced crowding) and interactions between the individuals within
a narrow channel (crowding between individuals) can significantly
increase the time taken for a population to equilibrate. We derive an
analytical condition for when the equilibrium occupancy of each
narrow channel lattice site is high and thus crowding effects are
important, which is hτi � NHD= αjVjð Þ, where NHD ¼ N � K tot

� �
is the effective number of particles in the reservoirs and Ktot is the
total number of lattice sites across all narrow channels (see Methods,
section “High-density condition”). We will term this regime the high-
density regime and it determines when the combination of localised
geometry and crowding is most prominent (Fig. 2b, left shaded
region).

Whilst the FMM is a conceptually ideal way to describe crowded
transport in complex geometries, evaluating the equilibration time is
computationally infeasible for all but the simplest networks (Fig. 2b,
inset) as the dimensionality of the transition matrix for the FMM is
O 2K totN jVj�1
� �

(see Supplementary Note 1). Therefore, to further
investigate the role of crowding and geometry on transport behaviour
it is critical to consider dimensionality reduction techniques.

Scaling to large geometries. Networked representations of
complex environments (Fig. 1a) may contain on the order of
hundreds or even thousands of interconnected reservoirs. In light
of such, we require models that scale computationally to large
environments whilst incorporating details of their microscopic

spatial structure. The high dimensionality of the FMM arises
from explicitly modelling the occupancy of every lattice site along
every narrow channel.

To make progress we introduce a reduced Markov model
(RMM) which, in lieu of considering the dynamics within the
narrow channels in detail, allows for direct exchange of
individuals between reservoirs (Fig. 2d). This approach is
reminiscent of the average current calculations for exclusion
processes between two open boundaries52. For the RMM let n be
the configuration vector, where ni is the number of individuals in
the ith reservoir. Focussing on the high-density regime (Supple-
mentary Note 1 discusses the low-density regime), where
crowding effects are most important, the rate at which exchange
between two connected reservoirs i and j occurs, denoted kHD

i;j ðnÞ,
is calculated by considering the dynamics of the interacting
individuals along the narrow channels (see the “Methods”, section
“Reduced Markov model”). By invoking particle–hole duality53, it
is convenient to consider the dynamics of the vacant sites rather
than the individuals explicitly. The resulting expression for
kHD
i;j ðnÞ is given by

kHD
i;j ðnÞ ¼ 1

K ði;jÞ � 1

τ�1
j ðnj þ 1Þ þ 2α

α2
þ Kði;jÞ � 2

2α

 !�1

: ð1Þ

Similar to the FMM, the RMM is a CTMC and the reciprocal of
the spectral gap of the transition matrix provides the equilibration
time. However, the dimensionality of the RMM is still
prohibitively high, O N jVj�1

� �
, and does not scale computation-

ally to large complex environments.
Further dimensionality reduction can be achieved through a

continuous mean-field approximation of reservoir occupancy in the
RMM. Introducing x, such that xi= ni/NHD is the fraction of the
population that lies within the ith reservoir, and expanding the
chemical master equations governing the RMM as a Taylor series
provides the corresponding Fokker–Planck equation, a partial
differential equation describing the evolution of the probability
density for the distribution of individuals (see the “Methods”, section
“Ornstein–Uhlenbeck process”). In equilibrium, the networked
distribution of the population is determined by the reservoir
geometry and is given by x* such that x�i ¼ τi=∑

jVj
j¼1 τj (see the

“Methods”, section “Ornstein–Uhlenbeck process”). Localising the

Fig. 2 A combination of crowding and geometry can impede population level transport. a Diagrammatic representation of the microscopic rules within
the narrow channel. The red arrows represent moves that are prohibited due to crowding, the green arrows represent permitted jumps. The parameter γi
represents the rate at which particles attempt to exit the right-most reservoir. b Equilibration time of the FMM with individual crowding (solid curve) and
without (dot-dashed curve) for a three-reservoir network (inset). The equilibration time of the Ornstein–Uhlenbeck process in both the low- and high-
density regimes (dashed black curves). The low- and high-density regimes are highlighted in grey. The parameters are K(1,2)= K(2,3)= 2, τ ¼ δ 2;4=3; 1

� �
such that 〈τ〉= 13δ/9 and 〈τ〉 varies from 10−3 to 105, α= 1, and N= 25. c Diagrammatic representation of the full Markov model (FMM) where
narrow channels between reservoirs (large circles) are discretised as integer lattices along which individuals (black dots) undergo crowded transport.
d Diagrammatic representation of the reduced Markov model (RMM) where individuals hop directly between adjacent reservoirs. The possible hopping
directions are indicated by the arrows.
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Fokker–Planck equation about x* reveals that the population
dynamics as the networked distribution equilibrates is governed by
an Ornstein–Uhlenbeck (OU) process which is known to be
Gaussian54. Thus, from an initial configuration of individuals x0,
the configuration at time t follows a multivariate normal distribution
with known mean vector μ(t; x0) given by

μðt; x0Þ ¼ exp �tFHD
� �

x0 þ I� exp �tFHD
� �� �

x�; ð2Þ
where I is the identity matrix, and covariance matrix Σ(t; x0) given by

Σðt; x0Þ ¼
Z t

0
exp �uFHD
� �

DHD exp �u FHD
� �T� �

du; ð3Þ

where FHD and DHD are drift and diffusion matrices, respectively
(see the “Methods”, section “Ornstein–Uhlenbeck process”). The
entries of the drift matrix FHD are given by

F HD
i;j ¼ Ai;j

kHDi;j

� �0
ðNHDx

�Þ
NHD

; ð4Þ

for i≠ j, and F HD
i;i ¼ �∑j≠iF

HD
j;i for 1≤ i≤ jVj, where Ai;j are the

entries of the network adjacency matrix and kHD
i;j ðNHDx

�Þ is the

continuous extension of kHD
i;j ðnÞ defined in Eq. (1). The entries of the

diffusion matrix DHD are

DHD
i;j ¼ �Ai;j

kHD
i;j ðNHDx

�Þ þ kHD
j;i ðNHDx

�Þ
� �

2N2
HD

; ð5Þ

for i≠ j, and DHD
i;i ¼ �∑j≠iD

HD
i;j for 1≤ i≤ jVj. Equation (2) reveals

that the equilibration time of the OU process is dictated by the
spectral gap of the drift matrix FHD which is in the form of a
networked graph Laplacian. The spectral gap of FHD accurately
predicts the equilibration time for the FMM (Fig. 2b) and is
inexpensive to compute. In particular, the transition matrix for the
FMM in Fig. 2b has a dimension of 6968 whilst the weighted graph
Laplacian FHD has a dimension of three. We now exploit this
remarkable dimensionality reduction to reveal the fundamental
principles that govern topological optimisation of equilibration times
in crowded environments.

Equilibration times are highly sensitive to an environments
network topology. To demonstrate how network topology can
affect equilibration times we first consider a toy network con-
sisting of five reservoirs (Fig. 3a, inset). The three-dimensional
reservoir positions xi are uniformly sampled within a unit sphere.
The integer narrow channel lengths between reservoirs i and j are
given by K(i,j)= ⌈∣∣xi − xj∣∣/Δ⌉, where Δ= 10−3 is the width of the
narrow channels and ∣∣xi − xj∣∣ is the Euclidean distance between
reservoirs i and j. We now consider all 728 possible connected
networks with five reservoirs and their corresponding equilibra-
tion times.

As a function of topology, equilibration times, calculated
from the spectral gap of FHD, vary over several orders of
magnitude (Fig. 3a). The topology that induces the quickest
equilibration is the complete network (Fig. 3a, b-(xiv)), because
the opportunities for individuals to exchange between con-
nected reservoirs are maximised when every connection is
present. However, a complete network is inappropriate to
describe most complex environments due to spatial constraints
limiting the connectivity of the reservoirs (Fig. 1a–d). The
connectivity of a network can be quantified by its total edge
length, the sum of the narrow channel lengths present in
the network. Imposing a restriction on the total edge length
(Fig. 3a, vertical line) reveals a new non-complete optimal
network (Fig. 3a, b-(viii)). By varying the restriction over the
range of total edge lengths, as defined by the minimum

spanning tree(s) and the complete network (Fig. 3a, b-(i) and
(xiv), respectively), a frontier of optimal networks arises
(Fig. 3a, b). Networks that lie on the optimal frontier, which
we term the optimal networks, represent environments in which
a population equilibrates efficiently, under a given restriction
on the environmental connectivity.

A global envelope of optimal networks. To explore properties
of the optimal frontier (Fig. 3a) we temporarily assume
homogeneous reservoir exit times, an assumption that models
environments with regular periodic structure such as synthetic
porous nanomaterials55. Thus, networks that lie on the optimal
frontier depend solely on the ensemble K of all possible narrow
channel lengths which, in turn, depends upon the spatial con-
figuration of the reservoirs (Supplementary Note 4). Comparing
optimal frontiers between distinct ensembles K requires two
rescalings (Supplementary Note 2). Firstly, the total edge length
of a network must lie in an interval defined by the total edge
lengths of the minimum spanning tree and the complete net-
work. The rescaled total edge length linearly maps this interval
to lie between zero and one and provides a dimensionless
measure of connectedness. Such a rescaling ensures that
the rescaled total edge length contains information about the
distribution of all possible edge lengths not just the edge lengths
present in the current network. Secondly, the equilibration
times are normalised by the minimum equilibration time,
which belongs to the complete network, and thus yields values
greater than or equal to one which represent how many factors
slower equilibration occurs for a given network compared to
the complete network.

Numerical evidence strongly supports the hypothesis that the
rescaled optimal frontier follows a global curve that is
independent of K and hence is independent of the spatial
configuration of the reservoirs (Supplementary Fig. 6). Over
many distinct ensembles K, the variation in the optimal frontier
becomes vanishingly small as the number of reservoirs increases
(Supplementary Fig. 6b–d). The global curve persists even for an
ensemble of channel lengths that are intentionally sampled from
an extremely heterogeneous distribution to ensure that the curve
is not a feature of our sampling procedure (Supplementary
Fig. 6e). The apparent persistence of the globally optimal frontier
has significant implications for optimal network design; testing
the optimality of a proposed network merely requires direct
comparison of the rescaled total edge length and equilibration
factor (two cheap-to-compute network statistics) to the global
curve. Moreover, the global curve provides a benchmark to
compare the efficacy of algorithms designed to efficiently
construct optimal or close to optimal networks (Supplementary
Note 4).

Reservoir heterogeneity leads to minimised equilibration times
in cases of restricted connectivity. Complex geometries can
exhibit a range of microscopic spatial structures (Fig. 1b), and this
gives rise to reservoir heterogeneity within the corresponding
networks (Fig. 1c). The effects of such heterogeneities can be
encapsulated by a vector of distinct reservoir exit times τ. To
meaningfully compare the optimal frontiers that arise from two
different vectors of reservoir exit times we require that both
vectors have the same ensemble average 〈τ〉. Such a requirement
guarantees that the narrow channel equilibrium occupancy is held
constant (see the “Methods”, section “Equilibrium occupancy”),
and thus changes in optimal equilibration times occur solely due
to reservoir heterogeneity rather than a change in crowding
effects. We note that the narrow channel equilibrium occupancy
can be viewed as the probability that an attempted jump to a
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lattice site within a narrow channel is aborted, and thus quantifies
the strength of the crowding effects. To systematically explore how
heterogeneity impacts the optimal frontier we introduce a vector
of reservoir exit times t ϕ

� �
with ith entry ti ϕ

� � ¼ 1� ϕ
� �hτi þ

ϕτi for ϕ∈ [0, 1]. The new reservoir exit times t ϕ
� �

depend upon
a heterogeneous yet arbitrary vector of mean exit times τ, and the
parameter ϕ controls the extent of reservoir heterogeneity, where
tð0Þ ¼ hτi; ¼ ; hτið Þ represents homogeneous reservoirs, ensuring
ht ϕ
� �i ¼ hτi for all values of ϕ. For increasing levels of reservoir

heterogeneity, which is achieved by increasing ϕ (Fig. 3c, inset),
the shape of the optimal frontier changes significantly, and opti-
mal networks achieve globally minimised equilibration times
(close to the equilibration time of the complete network) with
significantly reduced connectivity (Fig. 3c). Thus, heterogeneity
within the internal structure of complex environments has the
potential to facilitate globally efficient equilibration in environ-
ments with spatially restricted connectivity.

Optimal networks have distinct topological structure. The
topological structure of optimal networks can be characterised via
a weighted degree distribution that arises from considering the
diagonal entries of the weighted graph Laplacian, FHD. For the
complete network the ith diagonal entry of FHD is proportional to

Ri ¼ ∑j≠i τjK ði;jÞ
� ��1

which represents the total transition rate

out of the ith reservoir when viewing the weighted graph
Laplacian as a rate matrix (see Supplementary Note 2). As every
connection between reservoirs is present in the complete network
we term Ri the potential transition rate of reservoir i and we order
the reservoirs such that R1< � � �<RjVj. The ratio of the ith diag-
onal entry of FHD for a network G with adjacency matrix A and
the ith diagonal entry of FHD for the complete network is

Wi G;K; τð Þ ¼ ∑j≠iAi;j τjK ði;jÞ
� ��1

=Ri and represents the fraction

of the potential transition rate of reservoir i present in the net-
work G. The weighted degree distribution is defined by

Fig. 3 Optimal topologies that minimise networked equilibration times. a Equilibration time and total edge length for all 728 connected topologies for a
configuration of five reservoirs (inset). The reservoir colours represent the change in elevation highlighting how they are positioned in three-dimensional
space. The optimal frontier is highlighted in asterisks and given labels (i)–(xiv). For a given restriction (vertical line) the optimal network is given by label
(viii) and the asterisk is red. b Topologies of the networks that lie on the optimal frontier in panel (a). c Averaged coordinates from numerically estimated
optimal frontiers (Supplementary Note 4) with increasing levels of reservoir heterogeneity. The vectors of reservoir mean exit times are t(0), t(0.5) and
t(1) (inset). The shaded regions represent the standard deviation either side of the mean. d The range of equilibration factors of both optimal and non-
optimal networks for homogeneous, t(0), and heterogeneous, t(1), reservoir geometries. The shaded regions outlines the boundary of a point cloud from
5000 different configurations of 10 reservoirs (Supplementary Note 4), both optimal and non-optimal. e The range of equilibration factors of both optimal
and non-optimal networks for heterogeneous, t(1), reservoir geometries. The shaded regions outlines the boundary of a point cloud from 5000 different
configurations of 10 reservoirs (Supplementary Note 4), both optimal and non-optimal. f The bar charts (i)–(x) show the weighted degree distribution for
both optimal and non-optimal networks across the range of rescaled total edge lengths. The heterogeneous vector of reservoir mean exit times used in (c)
and (f) is τ ¼ 21; 22; ¼ ; 210

� �
. All data presented in (c)–(f) uses the same 5000 configurations of 10 reservoirs with randomly generated ensembles of

narrow channel lengths K (Supplementary Note 4).
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wi G;K; τð Þ ¼ Wi G;K; τð Þ �∑jVj
j¼1 Wj G;K; τð Þ=jVj for 1≤ i≤ jVj.

The weights wi G;K; τð Þ are translated such that if wi G;K; τð Þ > 0
then the ith reservoir has a ratio Wi G;K; τð Þ greater than the
network average, and is referred to as being over-represented in
the network. Similarly, a reservoir with wi G;K; τð Þ < 0 is said to
be under-represented. Naively, one might expect reservoirs with
the highest potential transition rates to be over-represented in any
network that lies on an optimal frontier, as connections between
reservoirs with high transition rates should encourage faster
equilibration. However, we discover that the structure of optimal
networks varies greatly depending on the restriction on the
rescaled total edge length.

The structure of networks that lie on the optimal frontier
compared with non-optimal networks (randomly sampled
connected topologies) is distinct across all rescaled total edge
lengths (Fig. 3d, e), with the greatest contrast seen for networks
with mid-range connectivity (Fig. 3d–f(iii)–(viii)). Moreover, the
weighted degree distribution highlights how reservoirs can be
connected to achieve optimality. Optimal networks with low
connectivity and reservoir homogeneity prefer connections
between reservoirs with high potential transition rates (Fig. 3f(i)
orange/green), on the other hand, for highly connected optimal
networks the relative importance of the reservoirs is reversed
(Fig. 3f(x) orange/green). Interestingly, as connectivity varies
between the two extremes, optimal networks involve over-
representation of reservoirs with both high and low potential
transition rates (Fig. 3f(vi)–(viii) orange/green). This transitional
behaviour vanishes if reservoir heterogeneity is sufficiently high,
where reservoirs with high potential transition rates are over-
represented for all levels of connectivity (Fig. 3f blue/purple).
Even for highly connected networks, the absence of a single
important connection between reservoirs can significantly
increase equilibration times by over a factor of four in
heterogeneous environments (Supplementary Note 2 and Sup-
plementary Fig. 8). Collectively our results demonstrate the ability
of the weighted degree distribution, as well as the graph Laplacian
FHD, to reveal connections between geometric structure and
optimal transport that could not have been identified with
traditional modelling approaches.

The dynamics of tagged individuals are highly sensitive to
narrow channel length. The detailed dynamics of a tagged
individual within a population is of interest across a broad range
of disciplines7,56. For example, the differentiated fate of a stem
cell can hinge upon the spatial and temporal dynamics of a single
protein within the crowded intracellular environment57. A sig-
nificant benefit of our framework is that it readily extends to
provide information at the level of a single tagged individual.
The microscopic dynamics of a tagged individual are identical to
the dynamics of any individual within the FMM. Therefore, the
transition of a tagged individual between adjacent reservoirs i
and j via a connecting narrow channel of length K(i,j) occurs as
follows. First a tagged individual in reservoir i will jump into the
first lattice site adjacent to reservoir i on the narrow channel
connecting the ith and jth reservoirs. In the high-density regime,
the tagged particle will jump back into reservoir i at rate α or
jump into the adjacent (second) lattice site when a background
individual is exchanged from the ith to the jth reservoirs. The
latter jump occurs at a significantly lower rate kHD

i;j nð Þ (Eq. (1))
and almost always the tagged individual returns to the ith
reservoir. For this reason we consider a tagged individual to have
‘properly’ entered the narrow channel only when it reaches the
second lattice site (Fig. 4a(i), (ii)). Then, as background indivi-
duals continue to be exchanged between reservoirs i and j, the
tagged individual undergoes a random walk along the sites
of the narrow channel until either being absorbed back into the
ith reservoir (Fig. 4a(i)), or absorbed into the jth reservoir

(Fig. 4a(iii)). The latter occurs with probability pTI xi; xj;K ði;jÞ
� �

,

where the fractions of the population that occupy the ith and jth
reservoirs at the moment when the tagged individual first enters
the narrow channel (Fig. 4a(ii)) are denoted xi and xj, respec-

tively. The probability pTI xi; xj;K ði;jÞ
� �

is given by

pTI xi; xj;Kði;jÞ
� �

� f 0 xi; xj
� �

∑
K ði;jÞ�2

k¼0
f k xi; xj
� �" #�1

; ð6Þ

Fig. 4 Narrow channel lengths affect tagged individual dynamics. a Diagrammatic representation of how a tagged individual (orange) transitions from
one reservoir (large circles) to another, and the net exchange of background individuals (black) required to do so. (i) The tagged individual is initially in the
left-most reservoir. (ii) The tagged individual is considered to have entered the narrow channel only when it reaches the second lattice site denoted by the
2. (iii) The tagged individual has reached the right-most reservoir. b The tagged individual crossing probability pTI (Eq. (6)) for increasing narrow channel
lengths K(i,j)∈ {4, 25, 400, 650}. The blue and red lines correspond to channel lengths of 4 and 650, respectively. c The tagged individual mean exit time
mTI (Eq. (8)) for increasing narrow channel lengths K(i,j)∈ {5, 10, 25, 50, 100, 150} where the curve corresponding to K(i,j)= 150 is highlighted in green. The
parameters used in (b) and (c) are as follows. The two reservoir exit times τi and τj are given by τi= τj= 0.1 and the number of individuals is given by
N= 103.
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where the functions f k xi; xj
� �

are given by

f k xi; xj
� �

¼ τi
τj

 !k
xi

xi þ xj
þ 2� k

NHD xi þ xj
� �

0
@

1
A

NHDxiþ3=2�k

´
xj

xi þ xj
þ 1þ k

NHD xi þ xj
� �

0
@

1
A

NHDxjþ1=2þk

:

ð7Þ

The probability pTI is referred to as the tagged individual crossing
probability (see the “Methods”, section “Tagged individual
crossing probability” for a derivation).

The successful crossing of a tagged individual that has just
entered the narrow channel (Fig. 4a(ii)) requires a net exchange
of several background individuals from the ith to the jth reservoir.
The probability, pTI, that this net exchange occurs depends on

xi= xi þ xj
� �

, the fractional occupancy of the ith reservoir relative

to the jth (Fig. 4b). For fractional occupancies greater than the

equilibrium fractional occupancy, which is x�i = x�i þ x�j
� �

where

x�i ¼ τi=∑
jVj
j¼1 τj (Fig. 4b, vertical dashed line), as the population

equilibrates there is a bias favouring exchange of background
individuals from the ith to the jth reservoir which subsequently
increases the tagged individual crossing probability. However, the
probability pTI becomes incredibly sensitive to the fractional
occupancy as the length of the narrow channel increases (Fig. 4b,
arrow). Indeed, a successful crossing of a tagged individual can
require that the fractional occupancy of the ith reservoir is
significantly above the equilibrium occupancy (Fig. 4b, red curve).
Thus, in an equilibrated population, the probability that a tagged
individual traverses between two adjacent reservoirs is effectively
zero if the narrow channel is too long. In particular, for
homogeneous reservoirs (τi= τ) we find that the tagged
individual crossing probability is effectively zero when
K ði;jÞ ≥

ffiffiffiffiffiffiffiffiffiffiffiffi
N=jVjp

(Supplementary Note 1 and Supplementary
Fig. 5).

The temporal dynamics of tagged individuals are drastically
affected by narrow channel length. For an individual that has just
entered the second lattice site along the narrow channel
(Fig. 4a(ii)), the tagged individual mean exit time,

mTI xi; xj;K ði;jÞ
� �

, denotes the mean time taken for the tagged

individual to exit the channel at either end, and is given by

mTI xi; xj;K ði;jÞ
� �

� pTI xi; xj;K ði;jÞ
� �

h1 xj
� �

þ ∑
Kði;jÞ�2

k¼2
∑
k

‘¼1

h‘ðxjÞf k xi; xj
� �

f ‘ xi; xj
� �

2
4

3
5;
ð8Þ

where h‘ðxjÞ ¼ K ði;jÞ � 1
� �

NHDxj þ ‘
� �

= τjα
2

� �
, and the

f k xi; xj
� �

are as in Eq. (7) (see the “Methods”, section “Tagged

individual mean exit time” for a derivation). The effect of
increasing the length of the narrow channel K(i,j) on mTI is two-
fold. Firstly, the tagged individual mean exit time increases
drastically (Fig. 4c, arrow). Secondly, as for pTI, mTI becomes
incredibly sensitive to the fractional occupancy of the two
reservoirs. Fractional occupancies of the ith reservoir slightly
above equilibrium introduce a temporary bias that encourages the
tagged individual to move further along the channel. Once the
background individuals have equilibrated the bias is removed
whilst the tagged individual remains within the internal lattice
sites of a long narrow channel. Relying solely on the unbiased
stochastic fluctuations of background individuals increases the
time taken for the tagged individual to exit the channel by many

orders of magnitude (Fig. 4c, peak of green curve), in particular
this time can significantly exceed the equilibration time of the
entire population (Supplementary Fig. 3b).

Crowding alters the paths taken by tagged individuals.
Exploration of the motion of tagged individuals throughout a
complex and crowded environment requires highly scalable net-
worked transport models capable of extracting information at the
level of the individual. We extend our framework, using the
concepts of the tagged individual crossing probability, pTI, and
mean exit time, mTI, to provide such models of individual
dynamics within both fixed and stochastically fluctuating back-
ground populations (Supplementary Note 1). For a fixed equili-
brated population, the spatial dynamics of a tagged individual can
be investigated via a discrete networked random walk model. The
dynamics of this random walk model are revealed via analysis of
the transition matrix, rather than via stochastic simulation
(Supplementary Note 4). As such, many useful statistics
describing the dynamics of tagged individuals within complex
and crowded environments are immediately available. To high-
light the utility of the discrete random walk model we consider a
first-passage process58, reminiscent of the Notch signalling
pathway where an intracellular protein traverses between the
cellular and nuclear membranes57. We adopt a caricature repre-
sentation of the intracellular geometry in the form of a random
geometric network (Fig. 5a, b and Supplementary Note 4), and
consider the first-passage properties of a tagged individual initi-
ally within a reservoir adjacent to the cellular membrane (Fig. 5a,
b, outer circle) whose position evolves according to the networked
discrete random walk (Supplementary Note 4) before terminating
at a reservoir adjacent to the nucleus (Fig. 5a, b, inner circle).

By comparing our discrete random walk model to an almost
identical model that does not consider crowding effects
(Supplementary Note 4), we discover that crowding effects within
the narrow channels drastically alters the paths taken by tagged
individuals (Fig. 5). The expected number of times an individual
traverses a narrow channel becomes highly sensitive to local
network topology when crowding effects are incorporated (Fig. 5a,
b). The negligible chance that a crowded tagged individual
traverses a long narrow channel (Fig. 4b and Supplementary
Fig. 6) significantly widens the distribution of the expected
number of crossings (Fig. 5c and a, b highlighted regions), and
tagged individuals follow paths that visit reservoirs connected via
short narrow channels significantly more often than longer
channels (Supplementary Fig. 4). Favouring shorter narrow
channels subsequently favours indirect paths (Supplementary
Fig. 4a) resulting in an increase in the total path length of an
individual that moves from the cellular to the nuclear membrane
(Fig. 5d). The alterations of the dynamics of tagged individuals
due to crowding, as detailed above, has important implications
for the efficiency of signalling pathways and subsequent down-
stream processes59.

Discussion
Our results highlight how networks provide an effective frame-
work through which to reveal and quantify the combined influ-
ences of geometry and crowding on the transport properties of
individuals confined within finite complex environments. More-
over, detailed network analysis uncovered global relationships
between population-level transport behaviour and optimal net-
worked topologies, as well as the salient network features
responsible for optimisation. Our framework provides insights
into the interplay between geometry, crowding and transport,
with such insights being of relevance for a range of geometrically
regulated transport processes.
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The work presented in this paper focusses on modelling the
temporal fluctuations of particles within the reservoirs of a network.
This was achieved through averaging the effects of crowding within
narrow channels by assuming that the narrow channel occupancy is
held constant. However, previous work has shown that crowding
effects can give rise to strongly fluctuating densities within narrow
channels52. As such, it would be interesting to extend our framework
to allow for both the occupancy of reservoirs and narrow channels to
fluctuate and explore whether our conclusions about optimal net-
worked topologies change. This would offer a means to test whether
the global envelope of optimal networks persists, providing further
evidence of a possible universal relationship between rescaled total
edge length and optimal equilibration.

Beyond identifying global connections between crowding,
geometry and transport, our framework provides an efficient
computational tool to perform more focussed investigations. For
example, cardiomyocyte cells have an intracellular environment
consisting of mitochondrial and myofibril filaments. Patients
suffering from diabetic cardiomyopathy have been shown to have
highly clustered and disordered mitochondrial distributions60,61.
It has been hypothesised that these alterations to the intracellular
geometry help regulate the transport of essential metabolites and
increase the overall energy supply to the cell in an effort to
maintain regular heart function60. A networked modelling
approach might offer insights into the functional role of the
observed intracellular restructuring. Analysing the structure of
networks extracted from light-sheet microscopy images (Supple-
mentary Fig. 10) would quantify the structural differences
between healthy and diabetic cardiomyocytes and studying the
transport of metabolites on these networks would provide a
means to test whether these changes in intracellular geometry can
improve cellular bioenergetics. Moreover, the computational
efficiency of our framework increases the number of experimental
images that can be studied compared with traditional approaches
that are constrained by using high-resolution meshes. Studying a
large number of distinct cellular geometries will be critical to
developing a deeper understanding of how intracellular restruc-
turing may regulate cellular bioenergetics.

Our framework offers opportunities for generalisation. The
RMM is formulated as a chemical reaction network62 and thus
can immediately support reactions between individuals, where
subsequent coarse-graining will result in a Fokker–Planck equa-
tion capable of investigating geometry-controlled kinetics63.
Included within Supplementary Note 3 is a generalisation of our
framework that supports active transport. We study a partially

asymmetric simple exclusion process (PASEP) that allows indi-
viduals to undergo bi-directional motion along narrow channels
but with a bias in one direction. Extending to active transport
opens the door to investigating the geometric influences on highly
crowded transport phenomena across a wide array of spatial
scales, from mRNA translocation along intracellular microtubule
networks64, to molecular trafficking between cells connected via
cytonemes65 or plasmodesmata66, to the transport of sediment
subjected to flows within porous media67.

By reconceptualising how we model crowded, geometrically
constrained transport, we can also gain insights within fields such
as optimal synthetic design68 and molecular cell biology69, to
name a few. This work presents a versatile framework that paves
the way for furthering our understanding of the fundamental
connections between crowding, networked geometry and trans-
port beyond traditional modelling paradigms.

Methods
Full Markov model. In this section, we formally introduce the FMM as a con-
tinuous time random walk. Consider a network G ¼ fV; Eg, where V is the set of
reservoirs (nodes) and E the set of narrow channels (edges) that connect the
reservoirs. Assigning indices e to each narrow channel arbitrarily, the narrow
channels have non-dimensional length Ke 2 Z≥ 1 for 1≤ e≤ jEj, which denotes the
number of lattice sites in the narrow channel (in the “Results” section we use the
notation K(i,j) to denote the number of lattice sites in the narrow channel con-
necting the ith and jth reservoirs, to ensure clarity we will switch between the
notations K(i,j) and Ke as appropriate). Each narrow channel is assigned an arbitrary
polarity and the lattice sites have indices {1,…, Ke}. A total of N individuals
populate the network and their configuration at time t is described by the state
vector S(t). The state vector is written as a concatenation of additional vectors,
SðtÞ ¼ ðRðtÞ;N1ðtÞ; ¼ ;NjEjðtÞÞ, where, for 1 ≤ i≤ jVj, [R(t)]i= Ri(t) is the number
of individuals in reservoir i at time t. For 1≤ e≤ jEj and 1 ≤ k ≤ Ke, ½NeðtÞ�k ¼
Ne;kðtÞ is the occupancy of the kth lattice site along the eth narrow channel. Let
ΩN;G be the set of legal configurations for a population of N individuals on the
network G. The set ΩN;G consists of vectors s ¼ ðr; n1; ¼ ; njEjÞ, where [r]i= ri ≥ 0
for 1≤ i≤ jVj, and ½ne�k ¼ ne;k 2 f0; 1g for 1≤ e≤ jEj and 1 ≤ k ≤ Ke, such that

∑jVj
i¼1 ri þ∑jEj

e¼1 ∑
Ke
k¼1 ne;k ¼ N . The restriction ne,k∈ {0, 1} is necessary to enforce

volume exclusion for individuals in the lattice sites along the narrow channels.
For the FMM the population evolves as follows. An individual occupying any

lattice site within any narrow channel, attempts to jump to an adjacent lattice site
or reservoir at rate α. Individuals in the ith reservoir will attempt to jump into the
first lattice site of a connecting narrow channel at rate γi ¼ τ�1

i , where τi is the
mean exit time of the ith reservoir. Formally, the state vector S(t) evolves according
to the following CTMC. An individual in narrow channel e occupying the kth

lattice site, jumps to the adjacent lattice site k+ 1 at rate αNe;kðtÞ 1� Ne;kþ1ðtÞ
� �

for 1 ≤ k ≤ Ke− 1. Note that this transition rate is zero if either the kth lattice site is
empty, Ne,k(t)= 0, or the adjacent lattice site is occupied, Ne,k+1(t)= 1. An
individual in lattice site Ke along the narrow channel e jumps into the reservoir
connected to lattice site Ke at rate αNe;Ke

ðtÞ. Similarly, an individual occupying the

Fig. 5 The paths of tagged individuals between the cellular and nuclear membranes are heavily altered due to crowding. a and b Expected number of
crossings of each narrow channel with and without crowding in a realisation of a cellular signalling network with 1000 reservoirs (Supplementary Note 4).
c The normalised frequency of the number of channels for a given expected number of crossings. d Expected path length of a tagged individual as a
function of the position of the initial entry at the cellular membrane. The inset describes the position of the nucleus (small circle) and the cell membrane
(larger circle). The extremal entry points on the membrane are shown by the two stars. The magenta star is the distal entry point, and the cyan star is the
proximal entry point. All data presented in (c) and (d) is averaged over 100 realisations of a random geometric network (Supplementary Note 4).
Parameters for the discrete random walks (Supplementary Note 1) used in (a)–(d) are as follows. The number of individuals is given by N= 3 × 104, α= 1,
and the reservoir exit times are given by τi= 0.1 for every reservoir i.
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kth lattice site along narrow channel e jumps to the adjacent site k−1 at rate

αNe;kðtÞ 1� Ne;k�1ðtÞ
� �

for 2 ≤ k ≤ Ke, and an individual in the first lattice site

jumps into the connected reservoir at rate αNe,1(t). Finally, an individual in the ith
reservoir jumps into the first lattice site of a connected narrow channel e at rate

γi 1� Ne;1ðtÞ
� �

or γi 1� Ne;Ke
ðtÞ

� �
depending on the orientation of the narrow

channel e. A transition matrix Q for the CTMC is constructed as follows. Let

I ΩN;G
� �

be an index set, such that if u 2 I ΩN;G
� �

then su 2 ΩN;G. For u; v 2
I ΩN;G
� �

and u ≠ v the matrix entry Qu,v is equal to the rate at which state su
transitions to state sv, as detailed above. If a transition cannot occur via a single
jump event the matrix entry Qu,v is zero. The diagonal entries are equal to the
negative of the row sums, Qu,u=−∑v≠uQu,v for 1≤ u≤ jΩN;Gj. The reciprocal of
the spectral gap of Qmeasures the equilibration time for a networked population of
individuals.

Equilibrium occupancy. Here we derive an approximate formula for the equilibrium
occupancy probability of a narrow channel lattice site. We define the single-site
probability function ρð1Þi n; tð Þ ¼ P RiðtÞ ¼ n

� �
, to be the probability that the ith

reservoir is occupied by n individuals at time t. Define ρð1Þe OðkÞ; tð Þ ¼ P Ne;kðtÞ ¼ 1
� �

to be the probability that the kth lattice site along narrow channel e is occupied, where

1 ≤ k ≤Ke. Similarly, let ρð1Þe ;ðkÞ; tð Þ ¼ P Ne;kðtÞ ¼ 0
� �

be the probability that the kth

lattice site is vacant. For a network G ¼ fV; Eg, we seek a system of ordinary differential
equations (ODEs) that describe the evolution of the single-site probability functions. For
the ith reservoir let N ðiÞ be the indices for the narrow channels that are connected at
one end to the ith reservoir. For notational convenience suppose that every narrow
channel connected to reservoir i has polarity such that the lattice site adjacent to
reservoir i has index one. Define hRiðtÞi ¼ ∑N

n¼0 nρ
ð1Þ
i n; tð Þ, to be the mean number of

individuals in the ith reservoir at time t. Following the approach of Baker and
Simpson70 provides the ODEs

dhRiðtÞi
dt

¼ α ∑
e2N ðiÞ

ρð1Þe Oð1Þ; tð Þ � γi ∑
e2N ðiÞ

∑
N

n¼0
nρð2Þi;e n;;ð1Þ; tð Þ; ð9aÞ

for 1 ≤ i≤ jVj, where ρð2Þi;e n; ;ð1Þ; tð Þ is the two-site probability that the ith reservoir is
occupied by n individuals and the first lattice site along narrow channel e is vacant at
time t. Similarly, the ODEs for the occupancy probabilities of the lattice sites of a narrow
channel e connecting reservoirs i and j are

dρð1Þe Oð1Þ; tð Þ
dt

¼ γi ∑
N

n¼0
nρð2Þi;e n; ;ð1Þ; tð Þ þ αρð1Þe Oð2Þ; tð Þ � 2αρð1Þe Oð1Þ; tð Þ; ð9bÞ

dρð1Þe OðkÞ; tð Þ
dt

¼ αρð1Þe Oðkþ 1Þ; tð Þ þ αρð1Þe Oðk� 1Þ; tð Þ � 2αρð1Þe OðkÞ; tð Þ; ð9cÞ

dρð1Þe OðKeÞ; t
� �
dt

¼ γj ∑
N

n¼0
nρð2Þj;e n; ;ðKeÞ; t

� �þ αρð1Þe OðKe � 1Þ; t� �� 2αρð1Þe OðKeÞ; t
� �

;

ð9dÞ
for 2 ≤ k ≤Ke− 1. We are interested in the equilibrium solutions to the single-site
probability functions, but, to make progress, we first consider the equilibrium occu-
pancy probabilities along the eth edge.

Define S(e, k) to be the set of indices for the configuration states where the kth
lattice site on narrow channel e is occupied and the (k+ 1)st lattice site is vacant.
For u∈ S(e, k), v(u) is the index of the configuration state identical to u but the
individual in lattice site k now occupies lattice site k+ 1. Note that
Qu,v(u)=Qv(u),u= α, where Q is the transition matrix of the FMM. Through
decomposition of the two-site probability functions into entries of the equilibrium
distribution p(∞), i.e. the principal left eigenvector of Q, we can show that the
following local flux conservation law holds

ρð2Þe OðkÞ; ;ðkþ 1Þ;1ð Þ ¼ ρð2Þe ;ðkÞ;Oðkþ 1Þ;1ð Þ; ð10Þ
as follows:

αρð2Þe OðkÞ; ;ðkþ 1Þ;1ð Þ ¼ α ∑
u2Sðe;kÞ

½ p!ð1Þ�u ð11aÞ

¼ ∑
u2Sðe;kÞ

Qu;vðuÞ½ p!ð1Þ�u ð11bÞ

¼ ∑
u2Sðe;kÞ

QvðuÞ;u½ p!ð1Þ�vðuÞ ð11cÞ

¼ α ∑
u2Sðe;kÞ

½ p!ð1Þ�vðuÞ ð11dÞ

¼ αρð2Þe ;ðkÞ;Oðkþ 1Þ;1ð Þ; ð11eÞ

where the equality between Eqs. (11b) and (11c) holds due to detailed balance. Due
to a conservation of probability we have that

ρð2Þe OðkÞ;;ðkþ 1Þ;1ð Þ ¼ ρð1Þe OðkÞ;1ð Þ � ρð2Þe OðkÞ;Oðkþ 1Þ;1ð Þ; ð12Þ
and similarly

ρð2Þe ;ðkÞ;Oðkþ 1Þ;1ð Þ ¼ ρð1Þe Oðkþ 1Þ;1ð Þ � ρð2Þe OðkÞ;Oðkþ 1Þ;1ð Þ: ð13Þ
Combining Eqs. (10), (12) and (13), we have

ρð1Þe OðkÞ;1ð Þ ¼ ρð1Þe Oðkþ 1Þ;1ð Þ; ð14Þ
for 1 ≤ k ≤ Ke− 1. Therefore, we have shown that

ρð1Þe OðkÞ;1ð Þ ¼ ρ�e ; ð15Þ
for some constant ρ�e , for 1 ≤ k ≤ Ke.

Returning to the ODEs in Eq. (9a), we equate the right-hand side to zero
to provide a set of algebraic equations for the single-site equilibrium probability
functions in terms of the two-site equilibrium probability functions. We
find that for two distinct reservoirs i and j connected by a narrow channel e,
αρ�e ¼ γi ∑

N
n¼0 nρ

ð2Þ
i;e n; ;ð1Þ;1ð Þ ¼ γj ∑

N
n¼0 nρ

ð2Þ
j;e n; ;ðKeÞ;1
� �

. Expressions for the

two-site equilibrium probability functions, ρð2Þi;e n; ;ð1Þ;1ð Þ and ρð2Þj;e n; ;ðKeÞ;1
� �

,
can be found by first writing down their time-dependent ODEs and solving the
algebraic equations that arise by setting the time derivatives to zero, however the
resulting expressions would in turn depend upon three-site probability functions.
Instead, we close the system at the level of the two-site probability functions by
making a moment-closure approximation71. Utilising the mean-field
approximation (MFA)

ρð2Þi;e n;;ð1Þ;1ð Þ ¼ ρð1Þi n;1ð Þρð1Þe ;ð1Þ;1ð Þ; ð16Þ
yields

α~ρ�e ¼ γihRið1Þi 1� ~ρ�e
� �

; ð17Þ
and similarly,

α~ρ�e ¼ γjhRjð1Þi 1� ~ρ�e
� �

; ð18Þ
where ~ρ�e denotes the approximation to the exact equilibrium densities ρ�e due to
the MFA. Therefore, γi〈Ri(∞)〉= γj〈Rj(∞)〉 for directly connected reservoirs i and j.
For a connected network there exists a path between all pairs of reservoirs,
therefore γi〈Ri(∞)〉 is equal to some constant γ* for all reservoirs. Noting that
α~ρ�e ¼ γ� 1� ~ρ�e

� �
for all narrow channels e, reveals that the equilibrium density ~ρ�e

is equal to a constant ~ρ� ¼ γ�=ðαþ γ�Þ for all narrow channels. Combining
∑jVj

i¼1hRii þ K tot~ρ
� ¼ N , and 〈Ri〉= γ*/γi, yields γ� ¼ N � K tot~ρ

�� �
hðγÞ=jVj, where

[γ]i= γi and h(γ) is the harmonic mean of the reservoir jump rates. Substituting
the expression for γ* into ~ρ� ¼ γ�=ðαþ γ�Þ, and noting that h(γ)= 〈τ〉−1 where
hτi ¼ ∑jVj

i¼1 τi=jVj, results in the quadratic equation

K tot ~ρ�
� �2 � N þ K tot

� �þ αjVjhτi� �
~ρ� þ N ¼ 0: ð19Þ

Taking the smaller root of Eq. (19) (the only root between zero and one) yields

~ρ� ¼
N þ K tot

� �þ αjVjhτi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ K tot

� �þ αjVjhτi� �2 � 4NK tot

q
2K tot

: ð20Þ

The validity of this analytical approximation to the equilibrium occupancy is
explored in Supplementary Note 1 and Supplementary Fig. 1.

High-density condition. For the approximate equilibrium density ~ρ� , let ~ρ� ¼
1� ε where ε≪ 1 to ensure that the narrow channel equilibrium occupancy is
high. Linearising Eq. (19) and solving in terms of ε, yields ε ¼ αjVjhτi=
N � K tot

� �þ αjVjhτi� �
. As ε≪ 1 we must have hτi � N � K tot

� �
= αjVjð Þ.

Reduced Markov model. In this section, we present the derivation of the RMM.
We derive the transition rates kHD

i;j nð Þ of individuals between adjacent reservoirs i
and j by studying the time taken for an individual to be exchanged between the
reservoirs. We refer to this time as the vacancy switching time as it is more
convenient to invoke particle–hole duality53 and model the dynamics of a vacant
site rather than the interacting individuals themselves.

Consider an initial configuration of individuals where every lattice site along a
narrow channel connecting reservoirs i and j are occupied, and ni and nj
individuals occupy the ith and jth reservoirs, respectively. The only attempted
movements affecting the narrow channel (i,j) that are not blocked by exclusion are
either the individual in lattice site one jumps into the ith reservoir, or the individual
in lattice site K(i,j) jumps into the jth reservoir, and both jumps occur at rate α. In
the latter case, the jth reservoir is occupied by nj+ 1 individuals and lattice site K(i,j)

becomes vacant. The rate at which the vacant lattice site K(i,j) is re-occupied by an
individual from the jth reservoir is γj(nj+ 1), and this competes with the rate α, the
rate at which the individual in lattice site K(i,j) − 1 jumps into lattice site K(i,j). In
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the high-density regime the vacant lattice site K(i,j) is almost immediately re-
occupied by an individual from the jth reservoir and no exchange of individuals
occurs. However, eventually the individual in lattice site K(i,j)− 1 will jump before
any individual in the jth reservoir, resulting in a vacancy at lattice site K(i,j)− 1.

Let the lattice sites with indices between two and K(i,j)− 1 be referred to as the
internal lattice sites of the narrow channel. Then T enter

i;j is the time taken for a
vacancy to first enter the internal lattice sites of the narrow channel at the end
connected to the jth reservoir. A vacancy in the internal lattice sites follows a
symmetric random walk with jump rates α in both directions until eventually, at
time T absorb

i;j , the vacancy reaches one of the end lattice sites of the channel, namely
K(i,j) or one. If the vacancy reaches lattice site K(i,j) then almost immediately an
individual in the jth reservoir jumps into lattice site K(i,j) and there is no exchange
of an individual between the two reservoirs. However, if a vacancy reaches lattice
site one then almost immediately an individual in the ith reservoir jumps into
lattice site one. However, there are now ni− 1 and nj+ 1 individuals in the ith and
jth reservoirs, respectively, and an individual has been exchanged between the ith
and jth reservoirs. A vacancy at lattice site K(i,j)− 1 hits lattice site one before lattice
site K(i,j) with probability 1/(K(i,j)− 1). Therefore, the number of attempts before
the vacancy is absorbed at lattice site one, Gi,j, is geometrically distributed with
success probability 1/(K(i,j) − 1).

The time taken for a vacancy to enter the internal lattice sites at lattice site
K(i,j)− 1 and subsequently reach lattice site one, is referred to as the vacancy
switching time and is denoted by T switch

i;j ðnjÞ. The vacancy switching time is
expressed as the following random sum

T switch
i;j ðnjÞ ¼ ∑

Gi;j

k¼1
T enter;k
i;j þ Tabsorb ;k

i;j

� �
; ð21Þ

where T enter;k
i;j and T absorb;k

i;j are independent instances of the random variables

T enter
i;j and T absorb

i;j , respectively. Therefore, the RMM in the high-density regime is

defined to have transition rates kHD
i;j nð Þ ¼ Tswitch

i;j ðnjÞ
D E�1

for an individual to be

exchanged from the ith to the jth reservoir.
The first moment of the vacancy switching time in Eq. (21) is

T switch
i;j ðnjÞ

D E
¼ hGi;ji T enter

i;j

D E
þ T absorb

i;j

D E� �
; ð22Þ

where 〈Gi,j〉= K(i,j)− 1 and, from calculation of first passage times on a finite

lattice58, T absorb
i;j

D E
¼ ðKði;jÞ � 2Þ=2α. Recall that T enter

i;j is the time for a vacancy to

enter lattice site K(i,j)− 1. Initially every lattice site is full and the individual at
lattice site K(i,j) jumps into the jth reservoir after an exponentially distributed
amount of time, X, with rate parameter α. Then either the individual in lattice site
K(i,j)− 1 jumps into lattice site K(i,j) at rate α, or an individual in the jth reservoir
jumps into lattice site K(i,j) at rate γj(nj+ 1). The time taken for either jump to
occur is exponentially distributed, Y, with rate parameter α+ γj(nj+ 1). The
vacancy at lattice site K(i,j) enters lattice site K(i,j)− 1 with probability

q ¼ α= αþ γjðnj þ 1Þ
� �

, thus T enter
i;j ¼ ∑GðqÞ

k¼1 X
k þ Yk where G(q) is a geometric

random variable with success probability q and Xk and Yk are independent
instances of the exponential random variables with rate parameters α and
α+ γj(nj+ 1), respectively. The first moment of T enter

i;j is

T enter
i;j

D E
¼

αþ γjðnj þ 1Þ
α

1
α
þ 1

αþ γjðnj þ 1Þ

 !
: ð23Þ

From Eq. (23), and recalling that
D
T switch
i;j ðnjÞ

E
¼ hGi;ji

�D
T enter
i;j

E
þ
D
T absorb
i;j

E�
,

kHD
i;j ðnÞ ¼ Tswitch

i;j ðnjÞ
D E�1

and τj ¼ γ�1
j , the transition rates for the RMM in the

high-density regime have the explicit formulae

kHD
i;j ðnÞ ¼ 1

Kði;jÞ � 1

τ�1
j ðnj þ 1Þ þ 2α

α2
þ K ði;jÞ � 2

2α

 !�1

; ð24Þ

for 1≤ i ≠ j≤ jVj. The validity of the RMM depends on how accurately T switch
i;j ðnjÞ

is approximated by the exponential distribution with rate parameter kHD
i;j ðnÞ, which

is investigated in Supplementary Note 1.

Ornstein–Uhlenbeck process. In this section, we perform a coarse graining of the
RMM in the high-density regime to yield an OU process that governs the exchange
of individuals in a networked environment. To make progress we write down the
chemical master equations that govern the RMM. Let the vector νi,j for i ≠ j 2
f1; ¼ ; jVjg be defined as ½νi;j�k ¼ δj;k � δi;k for 1≤ k≤ jVj, where δj,k and δi,k are
Kronecker deltas. A transition from state vector n to n+ νi,j, corresponds to an
exchange of a single individual from the ith to the jth reservoir. Such a transition
can only occur if reservoirs i and j are directly connected via a narrow channel and
occurs at rate kHD

i;j nð Þ given in Eq. (24). Let the adjacency matrix A be a jVj ´ jVj
matrix with entry Ai;j equal to one if a narrow channel connecting reservoirs i and j
is present in the network, and zero otherwise. Additionally, define p(n, t) to be

the probability that the individuals are distributed amongst the reservoirs with
state vector n at time t. The chemical master equations governing the evolution of
p(n, t) are

dpðn; tÞ
dt

¼ ∑
jVj

i¼1
∑
jVj

j¼1
Ai;j kHD

i;j n� νi;j

� �
pðn� νi;j; tÞ � kHD

i;j nð Þpðn; tÞ
n o

; ð25Þ

where kHD
i;j nð Þ ¼ 0, when ni=NHD or nj= 0 to avoid transitions to states with

non-negative entries, or entries that exceed the total population NHD=N− Ktot.

Fokker–Planck equation. To derive the Fokker–Planck equation corresponding to
Eq. (25), we introduce x ¼ ðx1; ¼ ; xjVjÞ, where xi= ni/NHD is the fraction of the
population that occupies the ith reservoir. For NHD≫ 1, the fractions xi are
approximately continuous and lie in the interval [0, 1]. Introducing Q(x, t)= p(n, t)
and performing a Taylor expansion in ϵ= 1/NHD of Eq. (25), yields the linear
Fokker–Planck equation

∂Qðx; tÞ
∂t

¼ ∑
jVj

i¼1
∑
jVj

j¼1
Ai;j ϵ∇i;j g HD

i;j xð ÞQðx; tÞ
h i

þ ϵ2

2
∇2

i;j g HD
i;j xð ÞQðx; tÞ

h i� �
; ð26Þ

where g HD
i;j xð Þ ¼ kHD

i;j NHDx
� �

. The operator ∇i,j is defined as ∂/∂xi − ∂/∂xj, and the
partial differential equation (PDE) in Eq. (26) is defined on the domain
x 2 ½0; 1�jVj, with zero-flux boundary conditions.

Equilibrium vector. The equilibrium vector x*, is the distribution of individuals
that satisfies the following equations:

∑
jVj

j¼1
Ai;j g HD

i;j ðx�Þ � g HD
j;i ðx�Þ

h i
¼ 0; ð27Þ

for 1≤ i≤ jVj. Eq. (27) is known as the global balance equation. The distribution of
individuals x* that solves the global balance equations is such that the total transition
rate out of each reservoir is equal to the total transition rate in. For large NHD the

rate functions are approximately given by g HD
i;j x�ð Þ � α2τj= K ði;jÞ � 1

� �
NHDx

�
j

� �
.

Substituting this approximation into Eq. (27), yields the following system of equa-
tions:

α2

NHD
∑
jVj

j¼1

Ai;j

K ði;jÞ � 1

τj
x�j

� τi
x�i

 !
¼ 0; ð28Þ

for 1≤ i≤ jVj. For b such that ½b�i ¼ τi=x
�
i and M such that for i ≠ j, Mi;j ¼

Ai;j= Kði;jÞ � 1
� �

and Mi;i ¼ �∑jVj
j≠i Mi;j , Eq. (28) is equivalent to Mb= 0. For a

connected network the null space of M is spanned by the constant vector and, along
with the condition that ∑jVj

i¼1 x
�
i ¼ 1, the unique solution to Eq. (28) is given by

x�i ¼ τi=∑
jVj
k¼1 τk for 1≤ i≤ jVj.

Localising the Fokker–Planck equation. To extract an equilibration time from the
Fokker–Planck equation in Eq. (26), we localise the PDE about the equilibrium
vector. Let z be a perturbation about the equilibrium vector, such that x= x*+ z
and ∣zi∣ ≪ 1 for 1≤ i≤ jVj. Introducing ~Qðz; tÞ ¼ Qðx; tÞ and localising Eq. (26)
about x* yields

∂~Qðz; tÞ
∂t

¼ ϵ ∑
jVj

i¼1

∂~Q
∂zi

∑
jVj

j¼1
Ai;j g HD

i;j ðx�Þ � g HD
j;i ðx�Þ

h i� �

þ ϵ ∑
jVj

i¼1

∂

∂zi
∑
jVj

j¼1
Ai;j gHD

i;j

� �0
ðx�Þzj

	 

� ∑

jVj

j¼1
Ai;j gHD

j;i

� �0
ðx�Þ

	 

zi

� �
~Q

� �

þ ϵ2

2
∑
jVj

i¼1

∂

∂zi
∑
jVj

j¼1
Ai;j g HD

i;j ðx�Þ þ g HD
j;i ðx�Þ

h i ∂

∂zi
� ∂

∂zj

 !
~Q

( )
:

ð29Þ
Note that the first bracketed term on the right-hand side of Eq. (29) is equal to zero
from Eq. (27). Adopting Einstein summation notation, Eq. (29) can be rewritten as

∂~Qð z!; tÞ
∂t

¼ F HD
i;j

∂

∂zi
zj ~Q
h i

þ DHD
i;j

∂2 ~Q
∂zi∂zj

; ð30Þ

with zero-flux boundary conditions at zi→ ±∞, where F HD
i;j and DHD

i;j are entries of
the drift and diffusion matrices, FHD and DHD, respectively. The entries of the drift
matrix FHD are

F HD
i;j ¼ ϵAi;j gHD

i;j

� �0
ðx�Þ; ð31aÞ

for i ≠ j, and

F HD
i;i ¼ �ϵ ∑

jVj

j¼1
Ai;j gHD

j;i

� �0
ðx�Þ; ð31bÞ
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for 1≤ i≤ jVj. The entries of the diffusion matrix DHD are

DHD
i;j ¼ � ϵ2

2
Ai;j g HD

i;j ðx�Þ þ g HD
j;i ðx�Þ

� �
; ð32aÞ

for i ≠ j, and

DHD
i;i ¼ ϵ2

2
∑
jVj

j¼1
Ai;j g HD

i;j ðx�Þ þ g HD
j;i ðx�Þ

� �
; ð32bÞ

for 1≤ i≤ jVj. The PDE in Eq. (30) is in the form of a linear Fokker–Planck
equation for a multivariate OU process for which the full probability distribution is
known54. Given an initial configuration of individuals x0 the configuration of
individuals at time t is normally distributed with mean vector μ(t; x0) and covar-
iance matrix Σ(t; x0), given by

μðt; x0Þ ¼ exp �tFHD
� �

x0 þ I� exp �tFHD
� �� �

x�; ð33Þ
and

Σðt; x0Þ ¼
Z t

0
exp �uFHD
� �

DHD exp �u FHD
� �T� �

du; ð34Þ

respectively, where I is the identity matrix. The timescale upon which the moments
decay to equilibrium is dictated by the spectral gap of FHD. Additionally, multiplying
Eq. (30) by each zi in turn and integrating over RjVj yields dμ(t)/dt=−FHDμ(t). This
system of ODEs is reminiscent of the system of ODEs that governs the evolution of the
probability distribution for a CTMC and therefore we can view the networked graph
Laplacian as effectively being a transition rate matrix.

Tagged individual crossing probability. In this section, we provide the technical
details for the derivation of the tagged individual crossing probability. Let distinct
reservoirs i and j be connected by a narrow channel of length K(i,j) such that the site
with index one is adjacent to the ith reservoir and the site with index K(i,j) is
adjacent to the jth reservoir. We consider the probability that a tagged individual,
initially in the second lattice site of a narrow channel connecting the ith and jth
reservoirs (Fig. 4a), which are occupied by ni and nj background individuals,
respectively, reaches the site with index K(i,j) before the site with index one. We
note that, just as for the vacancy switching time, as soon as a tagged individual
reaches a non-internal lattice site (either site one or K(i,j)) it is considered to have
reached the adjacent reservoir. However, unlike the dynamics of a vacancy, the
probability that a tagged individual moves towards the ith or jth reservoir is not
symmetric as it depends on the rates kHD

i;j ðnÞ and kHD
j;i ðnÞ. Furthermore, these

transition rates will change as the tagged individual walks along the narrow channel
reflecting the change in the configuration of the background individuals. To make
progress on this complex first-passage problem we formulate it as a recurrence
relation.

Let qi→j(k) be the probability that a background individual is exchanged from
the ith to the jth reservoir before an exchange in the opposing direction, whilst the
occupancies of the ith and jth reservoirs are ni+ 2− k and nj+ k− 2, respectively.
The index k corresponds to the position of the tagged individual, and for k= 2 the
occupancy of the reservoirs is ni and nj. Additionally, let p cross

k ðni; njÞ be the
probability that the tagged individual reaches site K(i,j) (the site adjacent to the jth
reservoir) before site one (the site adjacent to the ith reservoir), given that it is
initially at site k and the occupancy of the two reservoirs is ni+ 2− k and
nj+ k− 2, respectively. Then we can write down the recurrence relation

p cross
k ðni; njÞ ¼ qi!jðkÞpcrosskþ1 ðni; njÞ þ 1� qi!jðkÞ

� �
p cross
k�1 ðni; njÞ; ð35Þ

for 2 ≤ k ≤ K(i,j)− 1, where p cross
1 ¼ 0 and p cross

Kði;jÞ
¼ 1. Manipulating Eq. (35) yields

p cross
kþ1 ðni; njÞ � pcrossk ðni; njÞ ¼

1� qi!jðkÞ
� �

qi!jðkÞ
p cross
k ðni; njÞ � pcrossk�1 ðni; njÞ

� �
: ð36Þ

Defining rkðni; njÞ ¼ p cross
k ðni; njÞ � pcrossk�1 ðni; njÞ reduces the recurrence relation in

Eq. (36) to a first order recurrence relation with solution

rkðni; njÞ ¼ r2ðni; njÞ
Yk�1

‘¼2

1� qi!jð‘Þ
qi!jð‘Þ

 !
: ð37Þ

Noting that ∑
K ði;jÞ
k¼2 rkðni; njÞ ¼ p cross

Kði;jÞ
ðni; njÞ ¼ 1 and r2ðni; njÞ ¼ p cross

2 ðni; njÞ
reveals that

p cross
2 ðni; njÞ ¼ 1þ ∑

Kði;jÞ

k¼3

Yk�1

‘¼2

1� qi!jð‘Þ
qi!jð‘Þ

 !" #�1

; ð38Þ

where p cross
2 ðni; njÞ is the tagged individual crossing probability. We note that the

transition rates kHD
i;j nð Þ depend upon the occupancy of the jth reservoir only, as

such we redefine kHD
i;j nj
� �

¼ kHD
i;j nð Þ. Recall that qi→j(k) is the probability that a

background individual is exchanged from the ith to the jth reservoir before an
exchange in the opposing direction, whilst the occupancies of the ith and jth

reservoirs are ni+ 2−k and nj+ k−2, respectively. Therefore,

qi!jðkÞ ¼
kHD
i;j nj þ k� 2
� �

kHD
i;j nj þ k� 2
� �

þ kHD
j;i ni þ 2� k
� � � τ�1

i ni þ 3� k
� �

τ�1
i ni þ 3� k
� �þ τ�1

j nj þ k� 1
� � ;

ð39Þ
where the asymptote in Eq. (39) comes from Eq. (24) for large populations.
Substituting the right-hand side of Eq. (39) into Eq. (38) and rewriting the product
in Eq. (38) in terms of Beta functions yields

p cross
2 ðni; njÞ � 1þ

∑
Kði;jÞ
k¼3

τi
τ j

� �k�2
B nj þ k� 1; ni þ 4� k
� �

B nj þ 1; ni þ 2
� �

2
64

3
75
�1

: ð40Þ

Finally, letting xi= ni/NHD and noting that Bðx; yÞ � ffiffiffiffiffi
2π

p
xx�1=2yy�1=2=

x þ y
� �xþy�1=2

, a corollary of Stirling’s approximation, we arrive at an expression

for pTI xi; xj;Kði;jÞ
� �

, the tagged individual crossing probability

pTI xi; xj;Kði;jÞ
� �

� f 0 xi; xj
� �

∑
Kði;jÞ�2

k¼0
f k xi; xj
� �" #�1

; ð41Þ

where the functions f k xi; xj
� �

are given by

f k xi; xj
� �

¼ τi
τj

 !k
xi

xi þ xj
þ 2� k

NHD xi þ xj
� �

0
@

1
A

NHDxiþ3=2�k

´
xj

xi þ xj
þ 1þ k

NHD xi þ xj
� �

0
@

1
A

NHDxjþ1=2þk

:

ð42Þ

Tagged individual mean exit time. The derivation of the average time taken for
the tagged individual initially at the second lattice site to leave the narrow channel
by reaching either site one or K(i,j) is very similar to the tagged individual crossing
probability. Firstly, let E exit

k ðni; njÞ be the expected time taken for the tagged
individual initially at lattice site k to exit the narrow channel when the occupancies
of the ith and jth reservoirs are ni+ 2− k and nj+ k− 2, respectively. The
expected exit times E exit

k ðni; njÞ obey the following recurrence relation:

E exit
k ðni; njÞ ¼ qi!jðkÞEexit

kþ1ðni; njÞ þ 1� qi!jðkÞ
� �

E exit
k�1ðni; njÞ þ Tkðni; njÞ; ð43Þ

where Tkðni; njÞ ¼ kHD
i;j nj þ k� 2
� �

þ kHD
j;i ni þ 2� k
� �� ��1

is the average time

taken for a background individual exchange event to occur across the narrow
channel connecting the ith and jth reservoirs when they have occupancies ni+
k− 2 and nj+ 2− k, respectively. Repeating a near identical analysis of Eq. (43) as
was seen for the tagged individual crossing probability yields an expression for

mTI xi; xj;Kði;jÞ
� �

¼ E exit
2 NHDxi;NHDxj
� �

, the tagged individual mean exit time

mTI xi; xj;K ði;jÞ
� �

� pTI xi; xj;K ði;jÞ
� �

h1 xj
� �

þ ∑
Kði;jÞ�2

k¼2
∑
k

‘¼1

h‘ðxjÞf k xi; xj
� �

f ‘ xi; xj
� �

2
4

3
5;
ð44Þ

where h‘ðxjÞ ¼ K ði;jÞ � 1
� �

NHDxj þ ‘
� �

= τjα
2

� �
, and the f k xi; xj

� �
are as in

Eq. (42).

Code availability
Code reproducing the key results of this paper is available from the corresponding author
upon reasonable request.
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